
This article appeared in the
March 2004 issue of

Subscribe instantly at
www.bijonline.com

• Free in the U.S.

• $18 per year in Canada and Mexico

• $96 per year everywhere else

Enterprise Integrity:

Understanding Business

Transactions–Part I

By David McGoveran

http://www.bijonline.com

Practically everyone
has heard of

“business transactions.”
The phrase permeates
both business and
technology language,
especially that
regarding B2B and
business integration.
Most people have some
informal understanding
of the phrase and know

it refers to some kind of exchange or interaction between
multiple entities. That’s well and good, but we need
something more precise. Can we give business transactions a
formal definition that’s compatible with our traditional,
informal understanding? How do business transactions
relate to transactions as implemented in online transaction
processing (OLTP), application servers, transaction
managers, and so on? This month, I’ll begin explaining my
answers to these questions, starting with some transaction
basics.

There are many informal uses of the word “transaction.”
Most often, computer folks use transaction to refer to a
unit of work that’s made durable or otherwise confirmed
as communicated to its destination. For example, both the
communication of a message between two computers on a
network and the writing of a related set of data to disk—
each with some form of completion acknowledgement—
are often referred to as transactions. This is a very physical
notion of transaction in that it is not concerned with
either consistency or isolation, and relies on the physical
process of synchronization to establish transaction
boundaries (so-called synch points). As such, they provide
the basis for a unit of recovery. I prefer to call these
physical transactions.

Formally, a transaction is defined as a group of actions
that can be characterized by a state and that satisfy the
ACID (atomic, consistent, isolated, and durable) properties.
This definition includes important logical requirements and,
for this reason, I refer to such transactions as logical
transactions, distinguishing them from the less rigorous
physical transactions. The transaction state is the set of
values of a set of state variables at a point in time. State
variables are any variables whose values have a potential
effect on the final result of a transaction or which can be
changed by the transaction. State variables fully characterize
the portion of the system (e.g., database, business,
application, etc.) that is acted upon, and transient or
temporary variables are irrelevant.

A transaction is atomic in that it can’t be partially
completed and still retain its identity (i.e., intent or functional
purpose). A transaction is consistent in that its state satisfies a
set of predetermined consistency conditions at the start and at

completion (including so-called transition constraints).
Consistency conditions are also known as integrity constraints,
especially in the database world. In both the object-oriented
programming and business worlds, the phrases “contractual
conditions” and “compliance requirements” are often used.

Transactions are isolated in that only the initial and final
states may be known to other transactions, so they can’t
interfere with or influence each other’s work except by one
effectively preceding the other. Finally, transactions are
durable in that the final state is not arbitrarily altered, but
remains constant until altered by another transaction,
unrecoverable system failure, or acceptable failure (e.g.,
system abandonment or media decay). Durability enables
transaction recovery under most kinds of system failure.
Later we’ll discuss business parallels of these properties.

More than theoretical, ACID properties are prescriptive.
They define transaction so as to guarantee highly desirable
results in a predictable, and preferably automated, manner.
Although these properties are defined relative to particular
situations or contexts, and not in some absolute manner, it is
important to note that they are necessary for predictable
behavior. In effect, a transaction is a controlled
transformation of state. Equally important, ACID property
definitions enable automatic enforcement, permitting
declarative system control in place of transaction-specific
application coding.

Every logical transaction (and so every execution of it)
has a functionality that can be declaratively specified by
constraints. These obviously include constraints on the
permissible starting states and completion states, often
more restrictive than constraints applied to the entire
system. However, a specific transaction performs only
some of the transitions between the many combinations of
consistent beginning and ending states. Restricting the
permissible transitions effectively defines the transaction’s
intended functionality. Thus, an important aspect of
consistency is the definition and enforcement of transition
constraints.

Transition constraints are crucial in the business world and
in modeling the world, generally. They prevent “working
outside the system,” “skirting the law,” and “ill-gotten gains,” by
ensuring that “you can’t get there from here.” Our journey
continues next month. For now, can you think of a company
(or person) that lost its enterprise integrity because it didn’t have
adequate transition constraints? bij

ENTERPRISE
INTEGRITY
Understand ing
Bus iness
Transact ions :
Part I

6 • B u s i n e s s I n t e g r a t i o n J o u r n a l • M a r c h 2 0 0 4

B Y D A V I D M c G O V E R A N

David McGoveran is president of Alternative Technologies. He has more than 25
years of experience with mission-critical applications and has authored numerous
technical articles on application integration.
e-Mail: mcgoveran@bijonline.com
Website: www.alternativetech.com

About the Author

