
This article appeared in the
April 2004 issue of

Subscribe instantly at
www.bijonline.com

• Free in the U.S.

• $18 per year in Canada and Mexico

• $96 per year everywhere else

Enterpris
e Integrit

y: Understand
ing

Business T
ransactio

ns—Part II

By David McGoveran

http://www.bijonline.com

We often think of
business

transactions in the
sense of a purchase
of goods—one party
tenders the money
and the other party
tenders the goods.
However, “business
transaction” has
acquired a broader

meaning, evolving over a long period of use, eventually
coming to mean almost any agreed upon group of activities
between multiple business entities in which there is some
quid pro quo among the parties. There is something
profoundly special about business transactions; a set of
properties that separates business transaction from other
business activities. However, before we can explain these
properties, we first need to understand some more
transaction basics.

Note that consistency conditions are also known as
integrity constraints, especially in the database world. In both
the business world and the object-oriented world, they may
also be referred to as contractual conditions or compliance
requirements. Transactions can only legitimately begin when
some set of conditions is satisfied and can only complete
successfully when a set of conditions (often the same set) is
satisfied. Furthermore, transactions can only perform
certain transformations of state. Since computer-based
transactions are usually defined with input values specified
at run-time, some combination of values might cause a
transition between two consistent states, but for which that
particular change is disallowed. To prevent this, we can
either define extra constraints on the permissible
combinations of input values (and therefore on its initial
state) or define transition constraints that preclude the
change.

In practice, computer systems often avoid strict isolation
property enforcement in an effort to improve concurrent
access to state data or other transaction resources. If two
transactions are completely isolated, then the results of
running those transactions must be as if one (or the other)
had run to completion prior to the second beginning (i.e.,
serially). Obviously, scheduling execution serially is a good
way to waste resources and reduce throughput, so
transactions are actually run concurrently with their steps
interleaved using a protocol that guarantees the result is the
same as if the transactions were run serially. The problem is
that we can’t tell what that specific equivalent order is, and
so it’s crucial that consistency is enforced at transaction
boundaries to be certain of some correct result. An execution
schedule of a transaction set that executes so as to ensure

completely isolated behavior pair-wise for all transaction
pairs is said to be serializable.

In some scenarios, every possible execution schedule of the
applicable transactions may be serializable. No enforcement is
then necessary. Likewise, some scenarios may permit almost
all schedules to be serializable, so that only a degree of
enforcement is necessary. These situations are legitimate uses
of so-called “lower” isolation levels than serializable. Problems
arise when no analysis is done to ensure that the chosen
isolation level in conjunction with the scenario and
transaction mix is equivalent to serializable execution, or
when the transaction mix evolves without reanalysis. Even
worse, using coding techniques to enforce transaction
properties (instead of system facilities such as a TP manager)
inevitably results in much higher costs of development and
maintenance, and often leads to forms of data corruption that
can be very subtle. Such data corruption is difficult to detect
and expensive or even impossible to repair.

Properly speaking, a system that permits nonserializable
execution schedules—as defined here—is not really executing
logical transactions and so is a very high business risk, an
accident waiting to happen. Such systems don’t support
HIPAA or Sarbanes-Oxley compliance. Consider a
transaction that computes a number that must be reported
according to Sarbanes-Oxley. If nonserializable execution
schedules are permitted, it’s impossible to say definitively
that the transaction produces the intended number. The
possibility always exists that some other, concurrent
transaction interfered with the result. Exactly what can go
wrong, and whether the error is tolerable or not, depends on
the details of the concurrent transaction mix and the degree
of isolation that’s being enforced by the system. However,
the more complex and varied the transaction mix, and the
higher the load, the greater the likelihood of results for
which there is no definitive audit trail. Thus, certifying the
correctness of the number is impossible.

However achieved, transaction serializability is just not an
option. While system-enforced serializability might be
unnecessary for certain well-understood transaction mixes,
the CEO asked to sign off on a Sarbanes-Oxley report should
be skeptical. And, if data is being moved between two such
systems for integration purposes, I would be seriously
concerned about my enterprise’s integrity. bij

ENTERPRISE
INTEGRITY
Understand ing
Bus iness
Transact ions :
Part I I

6 • B u s i n e s s I n t e g r a t i o n J o u r n a l • A p r i l 2 0 0 4

B Y D A V I D M c G O V E R A N

David McGoveran is president of Alternative Technologies. He has more than 25
years of experience with mission-critical applications and has authored numerous
technical articles on application integration.
e-Mail: mcgoveran@bijonline.com
Website: www.alternativetech.com

About the Author

