
A r t i c l e P D F - S e p t e m b e r 2 0 0 2

This article is
a PDF version of
the one that
appeared in a
recent issue of
eAI Journal, the
leading resource
for e-business,
application
integration, and
Web services.

The PDFs of eAI Journal’s Data Integration
department are sponsored by:

Data Junction Corporation
5555 North Lamar Blvd.
Ste. J-125
Austin, TX 78751
tel: 512-452-6105 ext. 256
fax: 512-467-1331
www.datajunction.com

Data Junction sets the standard for

data integration with award-winning

technology, customer support and

technical services. Right now, more

than 40,000 customers invested in

Data Junction technology to solve

their most pressing integration

concerns, making our software the

most widely deployed in the world.

What integration challenges are you

facing? Discover how Data Junction’s

solutions fit into your integration

world. For an on-line demonstration

of the power and versatility of Data

Junction, contact us at 800.580.4411

or info@datajunction.com

™™

B y D A V I D M c G O V E R A N

6 eAI Journal • September 2002

enterprise

integrity

Data Integration, Part IV

Discovering data element semantics is a daunting task
that was all too familiar to enterprise data modelers
and database designers a decade ago. Insufficient

attention to data semantics exacerbates common integration
problems, which include its high initial cost and, often, inad-
equate return on investment. If all applications were designed,
developed, and operated based on an explicit data model, we’d
then have a hope of developing an enterprise data model with
consistent semantics. The model would guide data transfor-
mations between applications. Semantic data integration
would be easy. Unfortunately, reality is unkind; such models
rarely exist and we’re usually forced to investigate the correct
uses of a data element to discover data semantics in existing
applications.

Data semantics are often recorded implicitly as constraints
and relationships. For example, validation checks on data
entry fields serve to constrain the domain of the data type.
Similarly, transactions that read from and write to a data store
generally enforce data semantics to some degree. If integrity
constraints are fully defined and the data store is transaction-
ally consistent from an external perspective, then semantics
are preserved. However, we cannot know those semantics
unless we know the definition of each integrity constraint and
transaction. Well-designed logical transactions provide
important clues to data semantics. In the ideal transaction, all
encapsulated data elements are logically related and change
together as a unit of consistency.

Again, reality intrudes to make our task more difficult.
Application developers often combine some logical transac-
tions into a single physical transaction (a unit of recovery)
and split others into multiple physical transactions. Worse,
transaction code may be interleaved with other code or may
not even have explicit boundaries. The result is that it’s diffi-
cult to discern with accuracy either the semantic relationships
among data types or when constraints on values pertain to the
data type vs. a specific use of that type.

Too often, application-specific data stores use application
code to ensure transactional consistency from an internal (i.e.,
application-specific) perspective, rather than enforcing it
within the Database Management System (DBMS) for all
potential users and applications. The result is that an uncon-
strained user, such as an Enterprise Application Integration
(EAI) adapter, can access data in an intermediate (i.e., incon-
sistent) state of processing. Even an omniscient analyst can-
not specify the semantics of such data precisely because the

meaning of transactions leaves such intermediate states unde-
fined. This is terrible news for the data integrator attempting
to ensure consistent semantics between applications.

Many commercial applications as well as some custom
applications restrict data access to an Application Program
Interface (API) library to guarantee transactional integrity of
part of the data. Such applications either hide transaction
management — so each API procedure contains one or more
logical transactions — or else provide special API procedures
to begin, end, and abort a transaction. Both API approaches
make it difficult to discover transactional integrity constraints
(and therefore data semantics).

If each API access guarantees transactional integrity, trans-
actional semantics are embedded within each API procedure.
Unfortunately, that guarantee cannot extend across multiple
accesses without true transaction management. For example,
consider an API library for a purchasing application. The API
may easily enforce the semantic rule that each line item must
be associated with a purchase order and an approved vendor
(e.g., by requiring this information as procedure arguments).
It can also enforce credit limit semantics. Suppose further,
however, that the application also provides API-based trans-
actions that edit an existing purchase order incrementally,
adding new line items or deleting existing line items in any
order. Without transactions that span multiple API accesses, a
reporting function will then produce false (i.e., intermediate)
purchase order totals if run between line item edits.

Using special API procedures for beginning and ending a
transaction places a significant burden on the programmer to
design transactions correctly. Assuming the developer was
successful, the data integrator must minimally examine the
API code between each transaction (begin and end) to deter-
mine transaction semantics. Such APIs are among the most
difficult for the data integrator to analyze.

Code analysis is a costly, risky approach to documenting
data semantics. To avoid it, aggressively pursue semantically
consistent data models for every application and from every
vendor. Along with well-designed, encapsulated logical trans-
actions, data models can go a long way toward reducing the
data integration costs of enterprise integrity.

David McGoveran is president of Alternative Technologies, Inc. He has
more than 20 years’experience with mission-critical applications and has
authored numerous technical articles on application integration. e-Mail:
mcgoveran@alternativetech.com; Website: www.alternativetech.com.

