
6 Business Integration Journal • December 2003

Data Modeling

David McGoveran is president of Alternative Technologies, Inc. He has
more than 20 years of experience with mission-critical applications and has
authored numerous technical articles on application integration. e-Mail:
mcgoveran@bijonline.com; Website: www.alternativetech.com.

B y D A V I D M c G O V E R A N

enterprise
integrity

Where has all the data modeling gone? Over the last
four or five years I’ve become aware that increas-
ingly fewer IT projects bother with data modeling.

That’s a pretty serious mistake, especially where controlling
new software costs and integrating inherited assets (the polit-
ically correct term for legacy systems) are concerned.
Obviously, most IT projects involve either developing new
software, or integrating a new application or new functionali-
ty with existing software.

True, there are lots of one-off development and point-to-
point integration projects. But, hopefully,
we are learning that the long-term costs of
these projects seriously outweigh any per-
ceived short-term savings from the “code it
and deploy it” cowboy programmer
approach, the current craze of extreme pro-
gramming notwithstanding.

We’re increasingly encouraged to use a
model-driven approach. I wholeheartedly
endorse that concept. Unfortunately, “model-driven” all too
often means a little more than a variation on visual program-
ming. It’s hard for me to talk about development environment
being “model-driven” with a straight face when the so-called
model is just a set of visual diagrams and text specifications
with little or no science behind them. Mostly, these are efficien-
cy devices—engineering tricks that help a developer conceptu-
alize the program and which will result in a working application.

That’s certainly a good thing, but we need to step back and
think about how to do better. Consider how data is handled in
these tools, or perhaps I should say how data is not handled.
In my experience, few developers understand the difference
between conceptual, external, and internal (or to use another
set of terms, conceptual, logical, and physical) data models or
why anyone should even care. The tools they work with do not
encourage them to learn. For example, while J2EE application
servers have made a lot of the drudgery concerning perfor-
mance and run-time resource management easier, they have
failed to integrate with databases at the conceptual and logi-
cal level of design.

Here’s the thing. In order to understand data semantics, you
have to understand how each data element is intended to be
used. And I mean functional or business use, not physical use
like access patterns or storage methods. That is, you need to
understand logical data relationships—all of them—in order to
understand which data elements have natural cohesion and
which are more loosely coupled. Dependency theory, and the

normalization procedure based on it, is the bit of science that
can tell you the inherent “clumping”: It tells you which ele-
ments are properties of which entities and how those entities
are related. To put this another way for my Java friends, it tells
you what classes you need and how those classes are related
before you make any implementation decisions or do any opti-
mization for implementation-specific reasons. The resulting
logical class model should not have any physical data types
assigned to class attributes, as so often happens in a UML class
model. And all too often, a much worse mistake is made

because the class model is not consistent
with the dependencies among attributes. The
result is inconsistent data usage leading to
higher costs for user training, application
maintenance, component integration, and
application integration.

If a logical data model (by definition,
complete and consistent) existed for each
application’s data store, the many inconsis-

tencies with which we deal during application integration (or
mere enhancement) would be relatively easy to overcome. But
when an application is designed without the benefit of a logical
data model, or at least a class model that is consistent with the
logical data model implied by dependencies, integration and
enhancement are prone to costly errors. Why have we forgotten
this? Did we really expect object orientation, component mod-
els, or service-oriented architectures to change these proven fun-
damentals? If so, how?

Recently a researcher that I generally respect pontificated
on the future of XML schemas and enterprise information
integration. He suggested that we focus on using XML
schemas for federated data integration. Data modeling was
just too hard for developers. The gist of the conclusion I drew
was “schemas, schemas everywhere, and not a bit (byte?) with
sense.” It’s a trivial exercise to come up with many data
sources with very different semantics but with the same XML
schema: The real world of business is a lot more clever at cre-
ating subtle, consequential nuances of meaning. Can we
expect anything but confusion and high enterprise mainte-
nance costs from development tools and strategies that ignore
the fundamentals of enterprise data integrity?

You need to

understand logical

data relationships—

all of them

