
A r t i c l e P D F - F e b r u a r y 2 0 0 3

This article is
a PDF version of
the one that
appeared in a
recent issue of
eAI Journal, the
leading resource
for e-business,
application
integration, and
Web services.

The PDFs of eAI Journal’s Data Integration
department are sponsored by:

Data Junction Corporation
5555 North Lamar Blvd.
Ste. J-125
Austin, TX 78751
tel: 512-452-6105 ext. 256
fax: 512-467-1331
www.datajunction.com

Data Junction sets the standard for

data integration with award-winning

technology, customer support and

technical services. Right now, more

than 40,000 customers invested in

Data Junction technology to solve

their most pressing integration

concerns, making our software the

most widely deployed in the world.

What integration challenges are you

facing? Discover how Data Junction’s

solutions fit into your integration

world. For an on-line demonstration

of the power and versatility of Data

Junction, contact us at 800.580.4411

or info@datajunction.com

™™

By David McGoveran

18 eAI Journal • October 2001

No matter your job (Web devel-
oper, database administrator or
designer, or an application or

B2B integrator), it’s time to learn about
eXtensible Markup Language (XML)
databases.

An XML database is a database that
has XML documents stored in it, regard-
less of how. You need to know what these
databases can and cannot do for you and
when to use them. The number of data-
base products capable of supporting
XML is increasing rapidly and the prod-
uct marketing and publicity machines
are in full gear. Sadly, the claims being
made are self-serving. Many vendors
with an XML capability will tell you
how XDBMS (XML DBMS) products
are going to erode the Relational
Database Management Systems
(RDBMSes) market. XML consultants
and some analysts preach the same ser-
mon, with some claiming that
XDBMSes will replace the RDBMS
market altogether. Other vendors see
XDBMSes as an unnecessary fad,
doomed to vanish.

To sort out the truth from the flurry of
unreasoned argument, you’ll need to
understand some of the jargon surround-
ing the technology. That alone can be a
difficult task since each XML database
vendor, consultant, or developer probably
has something a little different in mind.
This article is intended to help with the
task.

Let’s start by understanding the word
database as clearly differentiated from
a database management system
(DBMS). By database, we mean an
organized collection of data. By
DBMS, we mean the software used to
manage (including access) that data and
its organization. We won’t use database
and DBMS interchangeably. It’s both
amusing and annoying that DBMS ven-
dors often think they sell organized col-
lections of data! Databases and
DBMSes can be classified according to
the data organizations, including hierar-
chical, network, flat-file, relational,
object-oriented, and others. To this list,
we may now add XML organization, a
variant of hierarchical. Only RDBMSes
support more than one physical organi-
zation inherently. This is a perpetual

The Age

of the

XML

Database

The Age

of the

XML

Database

eAI Journal • October 2001 19

source of confusion in the XML data-
base debate and seems particularly
beyond the grasp of the pundits of
“new” types of DBMSes. We’ll revisit
the use of multiple physical organiza-
tions later, but for now let’s focus on
understanding XML database imple-
mentations.

Native XML Support
By native XML support in a DBMS,

vendors and XML gurus may mean one
or more of several things. Certainly,
most will mean that XML documents
are stored intact physically as XML.
They almost always mean that each
XML document is stored in its entirety
in a single storage location as well. The
practicalities of this latter requirement
are questionable. File systems don’t per-
mit storage of objects of arbitrary size in
a single file, so storing all XML docu-
ments without permitting some form of
decomposition will have scalability lim-
its. For most purposes, you can safely
put this particular issue aside.

For the purist, native XML support
also means that all manipulation —
including searching, retrieval, inserting,
updating, and deleting — is done using
an XML language operating on stan-
dard XML objects and structures. The
emerging standard query language is
XPath, but you may encounter several
proprietary and proposed standard
XML query languages. Examples
include XQL, X-Query, and XML-QL.
Manipulation using an XML language
is of obvious value when all you’re con-
cerned with is XML documents. This
might be the case in, for example, a new
Web-based, business-to-business (B2B)
application. By contrast, an XML lan-
guage can be unnatural if XML docu-
ments are the exception. An example
there would be using XML to integrate
two existing enterprise applications.

Finally, native XML support is some-
times taken to mean that the schema is
derived automatically from the XML
document, or at least that XML schema
information is preserved and associated
with the XML document. Schema infor-
mation can be preserved through embed-
ded tags, Document Type Definitions
(DTDs), or XML schema. Remember
that XML is both data and metadata.

Internally, XML uses tags and has a self-
defining hierarchical or nested structure.
In addition, there may be an external or
separate schema definition (using DTDs
or the XML schema language). Naively
considered, this XML property differen-
tiates it from other types of data. While
there’s always some mechanism by
which data types and schemas are speci-
fied for the DBMS, XML requires that
the DBMS permit schema definition
when the document is stored.

A conceptually simple test for the
faithfulness of native XML support is
called “round-tripping.” This function-

ally descriptive name means that storing
an XML document won’t corrupt it.
That is, if you store an XML document
in the database and then later retrieve
that document, you’ll recover exactly
what you stored. This property is impor-
tant. Indeed, it’s surprising that anyone
would consider a product that lacks this
property — and so corrupted data that
was stored in it — to be a DBMS at all.
Data integrity is a fundamental, defin-
ing property of information systems and
anything less is unacceptable.

Imagine a vendor saying that you
could store a “5” in their RDBMS, but
that you might get back a “10!” Yet the
equivalent change of values is exactly
what happens with some XML database
implementations. Even worse, because
XML documents are “self-defining,” it’s
possible for the schema to be corrupted,

meaning that the document will be mis-
interpreted.

Most DBMSes that provide native
XML support were built from the bot-
tom up to support XML as the storage
organization. XML is inherently hierar-
chical. It requires a hierarchical storage
management facility such as that found
in old-style hierarchical DBMSes or
more recent object-oriented DBMSes.
Early versions of XDBMSes lacked
important features and functions of
mature DBMSes in the areas of:

• Integrity
• Transaction management
• Storage efficiency
• Indexing
• High levels of concurrency
• Multi-document query
• Performance
• Scalability.

Even today’s versions may be deficient
in these important features. Indeed, they
may be so limited in terms of transaction
rates, levels of concurrency, and docu-
ment sizes that they would not impress
users of other types of DBMSes that
commonly support strategic applications.

Non-Native XML Support
Many RDBMS vendors, when they

initially added XML support, took the
XML document decomposition approach
to storage. (XDBMSes often support it,
too.) Parsing on insert and recomposing
(or rendering) during retrieval consumes
both time and processing resources.
Some products also permit the document
to be indexed automatically or on request.
Decomposition techniques can vary con-
siderably. For example, a mapping to the
existing schema might determine which
portions of the XML document are stored
as records or rows of a particular type.
Alternatively, each XML document
might be treated as implying a new
schema so that new tables or other data
structures are created during storage.

The rendering process should re-
create the XML document exactly as it
was when stored (barring any interim
modifications). Because of deficiencies
in the XML document parsing process,
or because schema information was not
supplied, faithful document recomposi-

Early versions

of XDBMSes lacked

important features and

functions of mature

DBMSes.

20 eAI Journal • October 2001

tion may be impossible.
If a document can be corrupted, why

would anyone want to decompose it?
There are several reasons. First, decom-
posing a document makes it easier to
support multi-document query, multi-
document integrity or consistency, fine-
grained security, and so on. Second,
decomposing into a standard schema
aids uniformity and consistency when
data comes in multiple formats or from
multiple sources. For example, tradi-
tional business transactions are likely to
be recorded in an RDBMS. If e-busi-
ness transactions are then captured as
XML documents, decomposing them in
the existing RDBMS makes it possible
to report on all business transactions
and, therefore, to guarantee that they’re
processed exactly once. Similarly,
addresses or credit information can be
more easily verified and corrected.

RDBMS XML Support
You don’t have to decompose XML

documents to store them in a relational
database — unless usage demands it.
Support for complex, possibly highly
structured data types (called domains)
such as XML is inherent in the relational
model and is becoming more prevalent in
today’s RDBMSes. RDBMS can support
both native XML (documents as atomic
values of complex data types) or non-
native (decomposed) XML, depending
on the product. If round-tripping is sup-
ported, users need not even know if the
XML document has been decomposed.
The unique relational separation between
the physical schema and the logical
schema guarantees that data can be
stored in various ways while maintaining
a consistent, logical view of columns,
rows, and tables. Some users might see
only the intact document, even though it
has been logically decomposed. It’s not
free, but it’s powerful.

Decomposing can have other positive
effects, too. RDBMSes use a query lan-
guage based on logic, enabling the use

of a query optimizer. The optimizer
enhances each request via logical and
semantic simplification, and selects
from among available access methods
and operation sequences to achieve
optimized performance. It does so in a
way that’s sensitive to the amount of
data stored, its characteristics, and its
organization. Procedural query lan-
guages such as XPath have no hope of
such optimization since they dictate
access through a fixed structure and
sequence of operations.

Most RDBMSes can also be used to
generate XML documents. This means
that they can be used as the primary
source of new XML documents, with
the creation possibly initiated by some
business event, a user query, or a data-
base trigger. This functionality is partic-
ularly useful for dynamic Web content
creation, enterprise portals, and mes-
sage creation where the data source isn’t
XML and may be the enterprise data-
base-of-record.

Why Use an XDBMS?
An XDBMS is a specialized type of

DBMS. By definition, it’s designed for
XML storage, access, and manipulation

that is as efficient as current product
design allows. The self-defining and
hierarchical character of XML gives
XDBMSes an advantage over other
DBMSes when the workload is predomi-
nantly XML. XDBMSes will have some
advantages over both hierarchical and
network DBMSes as well as RDBMSes.
For example, if you know the physical
schema of an XML database, you’ll
know how to query and update it. But
there are problems with XDBMSes, too.
Redundancy can result from:

• Metadata and data entanglement
• Enabling self-defining documents
• Automatic schemas creation.

Such redundancy leads to both stor-
age inefficiencies and consistency
nightmares when the schema changes.
You can see this if you explore the
impact on all your XPath queries or
applications when:

• A tag is changed to avoid naming
conflicts

• A new hierarchy level is inserted.

Nonetheless, certain XML applications
are best supported by an XDBMS.

Presumably, you’re using XML for its
primary value — data portability. Before
you decide on the type of XML database
support you need, determine if XML
persistence is needed. Many XML appli-
cations don’t need it because the XML
document is produced and consumed
immediately. Examples include:

• Dynamic Web content creation and
delivery

• Portals into legacy data
• Integrating applications using XML

as the data transport
• e-Commerce or B2B application in

which XML is used as a data transport.

By contrast, integrating XML and
non-XML data, repetitive delivery of

Certain XML

applications are best

supported by an

XDBMS.

eAI Journal • October 2001 21

static Web content, and staging XML
messages all require some form of
XML persistence.

What you do with XML will strongly
influence your choice of DBMS as well
as how you use that DBMS. Here are
some quick guidelines:

• Determine whether there’s really a
need for XML persistence. Many
uses of XML are primarily for data
transport (i.e., they’re messages). In
that case, the XML document is con-
sumed by one or more applications
almost as soon as it’s delivered and
never reused. If this is the case,
there’s no need for an XDBMS.

• XML persistence can provide XML
document reuse, staging for asynchro-
nous message transport, and a history
or audit trail. If an XML document is
created and then reused without fur-
ther modification, use a DBMS with
native XML support. Such documents
are sometimes called document-cen-
tric. Document-centric XML is usual-
ly designed for human consumption
and can be extremely complex. While
an RDBMS that supports round-trip-
ping might be used, a dedicated
XDBMS may be more effective. If
you already have an RDBMS that can
be used for the purpose, the choice
will come down to considerations of
relative performance and administra-
tive overhead vs. the investment in a
new product.

• The primary motivation for decompos-
ing an XML document is to gain rapid
access to its elements without the over-
head of the entire document. Such doc-
uments are sometimes called data-cen-
tric because the data within the docu-
ment is the atomic unit. If your XML
documents are relatively small and will
be modified repeatedly over time, use a
DBMS that supports native XML stor-
age and automatic indexing of XML
tags. If the elements of an XML docu-
ment will be modified repeatedly over

time, use a DBMS that can decompose
the document.

• Keeping XML documents in a data-
base permits the entire collection to
be queried, updated, or correlated to
other, non-XML data. If the XML
document is part of a collection that
needs extensive querying, frequent
partial updates, or consolidation of
relational and non-relational data, use
an RDBMS that can decompose the
document, index it rapidly and auto-
matically, and that supports mapping

to your existing database schema.
• As often noted, XML is becoming the

lingua franca of business transactions.
Even though the usage might be docu-
ment-centric, the need for high-vol-
ume, transactional, and secure data-
base operations can be a crucial factor.
In such cases, you need a DBMS tech-
nology with proven transaction, securi-
ty, and integrity. If you need support
for transactions, large numbers of
users, fine-grained security, and cross-
document integrity enforcement, use
an RDBMS.

• XML’s self-defining property is both
an opportunity and a challenge. On the
one hand, it may be possible to under-

stand and use the data in a new type of
document without ever having en-
countered one of that type before. On
the other hand, there’s no substitute for
good data modeling that teases out the
semantic relationships among data
elements. This XML property can eas-
ily become a crutch, with the relation-
ships among documents and their ele-
ments completely ignored or, worse,
assumed visible through tags.
Although RDBMS schemas are rela-
tively easy to extend, most RDBMSes
were designed for infrequent schema
extensions or modifications and many
instances of each entity type. Auto-
matic schema extensions and arbitrary
XML document storage is the pro-
vince of XDBMSes. For now, if you
need to store unpredictable types of
XML documents, use an XDBMS, but
don’t ignore data modeling.

Summary
There are many applications that

need precisely what XDBMSes provide
and, as competition heats up, RDBMS
vendors will be forced to improve XML
support. XDBMSes are unlikely to sig-
nificantly dent the RDBMS hold on
enterprise databases, but their value and
importance cannot be denied. This may
not be the “age of the XDBMS,” but it’s
almost certainly the “age of the XML
database,” meaning that XML database
support is coming of age.

David McGoveran
is president of Alter-
native Technologies,
Inc. He has more
than 20 years’expe-
rience with mission-
critical applications
and has authored
numerous technical

articles on application integration. e-Mail:
mcgoveran@alternativetech.com; Website:
www.alternativetech.com.

About the Author

This may not be

the “age of the XDBMS,”

but it’s almost certainly

the “age of the XML

database.”

