
-
Beyond OLTP:
On·Line Complex
PiOcessing

This article defines OLCP, discusses
the requirements for an OLCP

DBMS, and documents a set of rules
that can be used to measure how well
a DBMS meets the needs of OLCP envi­
ronments. This list of objectives is not
meant to be exhaustive, nor are they
meant to provide a "scoreboard" for
DBMS evaluations. They can, however.
be used to guide the DBMS selection

~ process and to provide a foundation
, on which to build further evaluation

criteria.
As OLTP is still very popular, the

reader might legitimately ask, "Why
introduce yet another buzzword and
another goal for the industry?" There
are several reasons:

• The article "OL TP: What is it?" by
Colin White, which appeared in the
Spring 1989 issue of lnfoDB pre­
sented objectives for a relational
DBMS that supports an OLTP environ­
ment In the process<>f evaluating
DBMSS against these objectives, we
have learned a great deal about the
kinds of support available today. Sup­
port for OLTP by relational DBMSS is
far from perfect, however. Part of the
reason is that DBMS vendors are at­
tempting to provide OLCP facilities in
their products, and some of these
conflict with OLTP requirements.

• A recent study by the Aberdeen
Group in Boston found the perfor­
mance needs of 90% of all OLTP appli­
cations could be met by a relational
DBMS delivering the equivalent of 12
debit/ credit transactions per second.
If this is true, then why do busi­
nesses still find performance to be
an essential criterion in selecting a
DBMS? We feel that it is because of
OLCP needs, which are not addressed
by OLTP requirements.

• There is a need to characterize the
databases and database transactions
likely to be found in an OLCP environ­
ment. We do this not only to define
OLCP requirements, but also to con­
trast these requirements with those
for OLTP.

• Finally, we are convinced that the
complexity of applications will con­
tinue to increase at a phenomenal
rate over the coming decade:

- Users are becoming more familiar
with the benefits of graphical user
interfaces, artificial intelJigence

23

for query processing, and text . .
graphic and video databases.

- The inability to train end-users in
a cost and time effective manner
is promoting the use of smarter
user interfaces and applications.
which eliminate as much human
involvement as possible.

- Businesses are attempting to
integrate more and more of their
operations into a common logical
database using data-driven
applications.

- The application backlog is pre>­
moting the development of
re-usable software driven by a
data dictionary.

An OLCP Example

As an example of OLCP require­
ments. consider a Wall Street

on-line trading and portfolio manage­
ment system. Brokerage houses make
money on the volume of trades which
they are able to "structure." In s imple
cases, trades are a matter of simply buy­
ing x and selling v between two p~rties
at an agreed price. But, in today's
world, deals are often more compli­
cated. When to sell or buy depends on
a complex set of parameters. and some­
times on proprietary algorithms and
heuristics, which the brokerage house
follows.

We have seen traders monitor as
many as twelve video display terminals
at once, handling three or four tele-­
phone lines, and performing rapid
computations in order to buy or sell as
rapidly as possible. Automating this pre>­
cess requires on-line access to a great
deal of numerical data, precise numeri­
cal computations. coded character field
manipulations, and, most important,
database schema flexibility.

The very nature of the brokerage
business is change - new securities
are invented all the time. Once the
characteristics of a security are identi­
fied, it is necessary to perform all com­
putations consistently. This demands a
flexible database schema. If the entire
business is to be truly automated, new
securities have to be modeled on-line.
There is no time for a data modeler to
determine how to store the relevant
information and renormalize the data­
base. Today, most of this security infor­
mation is stored in a passive manner,
much like a text file would be stored.
This barely meets requirements and is

only slightly better than recording the
information on scraps of paper for
batch data entry and overnight
processing.

The brokerage business is highly
competitive. Creating a new kind of
security is like designing a new prod­
uct: if it is more attractive than other
products it sells, and gives its creator a
competitive edge. Unlike manufactur­
ing, securities are "paper" products.
'Iliey can be created almost as fast as
someone can think of them. This situa­
tion drives the need for flexibility. The
volume of trade drives brokerage profit­
ability, which in turn means massive
amounts of data regarding trades and
quotations need to be collected, que­
ried, and analyzed

There are a number of other exam­
ples of OLCP applications, including:

• bill of materials explosion

• manufacturing-dynamic scheduling
and routing

• risk management - portfolio analy-
sis and portfolio optimization

• CAD/CAM

• elementary particle research

• insurance policy maintenance

• insurance claims adjustment and
reconciliation

• telecommunications provisioning

What Is OLCP?

For all the complexity that OLCP
transactions add to relational DBMS

requirements, the high availability and
performance requirements supported
by OLTP are not lessened. In fact, they
may be increased over that of OLTP
environments. Furthermore, there may
also be OLTP, ad-hoc query, and deci­
sion support applications within an
OLCP environment, all using the same
highly volatile data.

OLTP database environments can be
characterized as including:

• a relatively stable database schema
and data model

• performance needs measured in 5 to
1000 transactions per second

• simple database access: narrow
columns and tables, few tables and
columns accessed and updated

• record-at-a-time updates and queries

• a few large (i.e. deep) volatile tables

• thin transactions - few statements
per transaction

• high availability

• sophisticated recovery and tracking

• batch reporting and optional batch
updating

• relatively straightforward integrity
constraints

OLCP database environments, on the
other hand, add complexity by having:

• an unstable (time-dependent and
unpredictable) database schema and
data model, possibly requiring mul­
tiple versions

• complex database access: many
tables affected; many columns up­
dated, scanned and selected; many
rows inserted, updated, deleted,
scanned and selected; fat columns
and wide tables; aggregate functions;
numerical computations

• set-at-a-time processing

• fat transactions - many statements
per transaction

• transactions of possibly long dura-
tion (e.g., days)

• many large volatile tables

• high availability

• on-line decision management
(OLDM) requirement

• complex integrity constraints

• a hybrid environment: decision sup­
port, interative ad-hoc query, OLTP,
batch operational processing, batch
end-user processing

OLCP Obiectives

A s with White's OLTP rules, the
OLCP rules are designed to comple­

ment existing rules for determining
other DBMS requirements, such as sup­
port for the relational model, and dis­
tributed database capabilities (where
appropriate). However, it should be
noted that DBMS requirements for OLCP
applications are less tolerant of certain
deviations from the relational model -
entity, domain, and referential integrity
must be supported. Some means (such
as stored procedures and triggers) for
implementing or simulating logical in­
dependence beyond updatable views is
required, since the schema underlying
an OLCP application is subject to fre- ·
quent change.

lnfoDB

24

The objectives for OLCP as they
relate to relational DBMSs are similar to
those for OLTP. In fact, OLCP objectives
include almost all the objectives of
OLTP. The objectives in this article
cover five fundamental aspects of OLCP:

• Performance - OLCP products
should provide good on-line
performance.

• Continuous Operation and High
Availability- OLCP products should
reduce or eliminate planned and un­
planned outages.

• Architecture - OLCP products
should have an overall architecture
that does not impose limits upon the
nature or volume of transactions to
be processed and should provide
capacity for growth.

• Systems Management Controls -
OLCP products should provide facili­
ties for controlling security, auditing
and performance.

• Processing Flexibility- OLCP
products should provide flexible and
robust processing facilities.

The OLCP objectives defined in this
article modify and extend the objec­
tives defined in the original OLTP
InfoDB article - see Figure 1 for a list
of the original OLTP rules. Unless stated
otherwise, the OLTP rules in Figure 1
apply also to the OLCP environment.
OLCP rules which replace the OLTP
rules or sub-rules are marked with an
R", rules which extend the OLTP rules
or sub-rules are marked with an E.

Performance

Rule 1. Efficient Concurrency
Scheme

l.lR Concurrency scheme supports
user-controlled locking granularity
when reading data. Controls are by

• system
• application
• transaction
• statement

Lock granularity when reading data
can be by

• record
• page
• table
• predicate
• index
• index page

Rule 1. Efficient Concurrency
Scheme

1.1 Concurrency scheme supports
record level locking when reading data.

1.2 Update transactions do not affect
the performance of read-only trans­
actions, and vice versa.

• multi-version read
• "dirty read"

1.3 Concurrency scheme supports
record level locking when modifying
data.

1.4 System handles and recovers from
deadlocks.

• deadlock detection
• timeout

1.5 Excessive lock wait times are
prevented.

• returns to application if a resource is
locked

• maximum lock wait time system
parameter

1.6 Transactions cannot degrade sys­
tem throughput by taking too many
locks.

• maximum locks system parameter
• lock escalation

1.7 System supports multiple levels of
transaction consistency (as defined by
A\ISl/ISO SQI2 proposal).

• Level 0 (dirty read)
• Level 2 (CS)
• Level 4 (RR)

Rule 2. Efficient Commit Logic

2.1 No synchronous data page 1/0 dur­
ing commit.

2.2 Supports group commit.

2.3 System coordinates the committing
of database changes and data communi­
cation monitor messages.

• DB and DC in a single task
• DB and DC two-phase commit

Rule 3. Efficient Database
Management

3.1 Supports look-aside buffering.

3.2 Supports (asynchronous) sequen­
tial pre-fetch.

3.3 Supports deferred write buffering.

3.4 Supports chained write buffering.

3.5 Supports parallel 1/0 operations.

• for write processing
• for read processing

Rule 4. Efficient Storage
Management

4.1 Supports B-tree indexing.

4.2 Supports hashing.

• hashedindex
• hashed data

4.3 Supports cross table combined
index.

4.4 Supports intra-table data clustering.

4.5 Supports inter-table data clustering.

4.6 Supports data compaction.

• automatically compacts zeros and
blanks in data

• supports index compression

• supports data compression exit
routines

4.7 Supports on-line disk space reclama­
tion and extension.

• space freed after delete operations

• allows dynamic extension of data­
base size without impact on on-line
application processing

Rule 5. Efficient Optimization

5.1 Optimizer uses a cost model and
statistics.

5.2 Optimizer output is cached in mem­
ory for re-use by the same or different
transaction.

• re-usable by the same transaction
• re-usable by a different transaction
• re-usable by a different application

5.3 Supports DBMS stored procedures.

5.4 Applications can execute DBMS
stored procedures on a remote
database server.

• client application can execute remote
procedure

• procedure can call remote procedure

• called remote procedure is in the
same transaction as the calling
procedure

Rule 6. On-line Utilities

6.1 Database utilities can be run while
the OLTP system is active.

ti!--:!:-- ,/ti!------ •AAA

• load
• backup
• recovery
• reorganization

6.2 Availability of table data is not
affected by utility operations.

25

• other tables remain available during
table load

• other tables remain available during
table backup

• table data can be read during backup
operations

• table data can be updated during
backup operations

• other tables remain available during
table recovery

• other tables remain available during
table reorganization

• table data can be read during index
backup

• table data can be read during index
recovery

• table data can be read during index
reorganization

Rule 7. On-line Definition

7.1 Definition can be done while the
OLTP system is active.

• data definition
• security definition
• system definition

7.2 Availability of table data is not
affected by definitional activity.

• other tables remain available while
defining, altering or deleting a new
table definition

• table data can be read while creating
or deleting an index definition

• tables remain available when creat-
ing or deleting a view definition

Rule 8. Large Database Support

8.1 System allows a large table to
be divided into subsets for utility
operations.

• can load table subset
• can backup table subset
• can recover table subset
• can reorganize table subset
• allows parallel utility operations

against subsets of the same table

8.2 System allows each table subset to
be stored on a different device.

• subset is by file
• subset is by primary key
• subset is by index "key"
• subset is by SQL restriction

8.3 Supports restartable utilities.

• load
• backup
• recover
• reorganization

8.4 Supports parallel searching of disk
volumes during query and update
processing.

• single table read
• multi-table join
• index scan
• index update

Rule 9. Efficient System Recovery

9.1 System has efficient disk recovery
logging (after image journaling).

• disk logging
• records physical data changed only

9.2 Full disk log automatically archived
to archive volume without impact on
system operation.

9.3 No manual intervention by the
operator is required to restart system
following system failure.

9.4 System restart times are controlla­
ble by the user.

• user can control system checkpoint
frequency ·

• user specifies maximum restart time
allowed

Rule 10. Efficient Database
Recovery

10.l Supports table level backup and
recovery.

10.2 System tracks files required for
recovery.

• backup
• logs
• backup information used during

recovery

10.3 Supports table point-in-time
recovery.

• table point-in-time-recovery
• ensures all related tables are

recovered

Rule 11. Efficient Application
Recovery

11.1 Backs out to last commit point
after an application failure.

11.2 Supports application restart from
last commit point after an application
failure.

Rule 12. Fault-Tolerance

12.1 Supports duplexed logs.

• through hardware
• through DBMS software

12.2 Supports duplexed databases/
tables.

• through hardware
• through DBMS software
• duplexed table
• duplexed database
• duplexed disk

12.3 Supports "hot" stan.dby processor.

12.4 DBMS supports sharing of database
data between loosely coupled proces­
sors for availability purposes.

• DEC Cluster
• IBM
• UNIX
• other

Rule 13. Hardware/Operating
System Software Exploitation

13.l Supports multi-way processors.

13.2 Supports shared memory
concepts.

Rule 14. No DBMS Imposed Limits

14.1 Unlimited database or table size.

14.2 Unlimited row size.

14.3 Unlimited number of table
columns.

14.4 Unlimited number of table fields in
an index.

14.5 Unlimited number of indexes on a
table.

14.6 Unlimited number of connected or
concurrent users.

14.7 Unlimited database bufferpool size.

Rule 15. Secure and Granular
Authorization

15.l Has field content level security.

• using views
• using security mechanism

._ .. _

15.2 Supports data access controls.

• read
• insert
• update
• delete

15.3 Allows grouping of users,
resources and privileges.

• users
• resources
• privileges

15.4 Supports external security
packages.

• user-ID and password
• database objects

Rule 16. Audit Capability

16.1 Records security violations by
user-ID.

26

16.2 Records tables modified by user-ID.

• name of table modified
• actual data modifications

16.3 Records tables accessed by user-ID.

16.4 Records security definitions by
user-ID.

16.5 Records data definitions by user-ID.

16.6 Records utility executions by
user-ID.

16.7 Records audit data in easy to use
form.

16.8 Tables can be selectively audited.

Rule 1 7. Performance
Management Tools

17.1 Provides off-line performance
reporting.

17.2 Provides on-line performance
reporting.

17 .3 Provides resource governor.

• CPU
• 1/0
• disk storage
• memory
• records processed

17.4 Can control number of logged-on
and concurrent users.

• logged-on users
• concurrentusers

Figure 1 • White's OLTP rules

Ideally, the DBMS could automatically
determine the ideal lock granularity in
any environment. In an OLCP environ­
ment, the mix of transactions and kinds
of processing is so complex that it is
unlikely an automatic system could de­
termine the proper granularity dynami­
cally. By supplying the user with
sufficient control, concurrency can be
improved for critical transactions.

l.3R Concurrency scheme supports
user-controlled lock granularity when
updating data. Controls are by

• system
• application
• transaction
• statement

Lock granularity when updating data
can be by

• record
• page
• table
• predicate
• index
• index page

l.4E System handles and recovers from
deadlocks:

• deadlock prevention
• automatic retry

The prevention of deadlocks is some­
times required. If this facility is not
available, it is desirable to provide a
mechanism for automatic retry of trans­
actions which are aborted during dead­
lock recovery.

l.5E Excessive lock wait times are
prevented:

• transactions can be prioritized

In an OLCP application, some trans­
actions are more important than
others. By assigning transactions a
relative priority, resource waits can be
controlled.

l.6E Transactions cannot degrade sys­
tem throughput by taking too many
locks. Lock escalation criteria are user­
controlled by

• system
• application
• transaction
• statement

If a system provides lock escalation
(or demotion) as a means of preventing
transactions from taking too many
locks, the criteria for lock escalation

must be controlled. If the criteria are
"hard-wired" into the system. lock
escalation (or demotion) is more likely
to reduce concurrency on critical data.

l.8E The user may influence the con­
currency control mechanism:

• optimistic concurrency supported
• pessimistic concurrency supported

Most of the concurrency rules in
the OLTP section assume a pessimistic
concurrency control mechanism (i.e.,
using locking). In some OLCP applica­
tions, collisions between concurrent
users are known to be unlikely and an
optimistic mechanism may be more
appropriate.

Rule 4. Efficient Storage
Management

4.7E Supports on-line disk space
reclamation and extension:

• dynamic disk space e:istension and
reclamation can be disabled during
critical operations

During batch inserts and deletes,
the overhead of dynamic disk space
management may be too great to allow
completion of the batch work during
off-peak hours.

4.8E The system warns the user when
user-defined thresholds are reached
regarding available and allocated disk
space.

Rule 5. Efficient Optimization

5.lE Optimizer uses a cost model and
statistics:

• uses cost functions (not cost indexes
or heuristics)

• is not sensitive to statement syntax

The optimizer in OLCP applications
must be sophisticated and should use
true cost functions in optimizing data­
base access. Because of the wide vari­
ety of Data Manipulation Language
(DML) statements in the application,
and their complexity, performance
should not be sensitive to changes in
statement syntax.

5.3E Supports DBMS stored procedures:

• accept parameters
• support error handling
• may be nested
• support a procedural language

Stored procedures provide a means
of simulating logical data independence
or implementing database schema

c-.. 1-- tc .. ---· 'I a nn

27

independence for applications. This is
important for schemas which are likely
to change.

5.5E The DBMS supports both compiled
and interpretive data DML modes of
operation.

OLCP applications can consist of a
combination of static and dynamic DML
statements. The environment may con­
tain OLTP as well as ad-hoc interactive
applications. It is advantageous for the
static DML to be compiled, and for the
dynamic statements to be interpreted.

5.6E There is an EXPLAIN facility.
The ideal optimizer would automati­

cally select the best access path regard­
less of the complexity of the DML, the
database, or the application environ­
ment. Without such an optimizer, an
EXPLAIN facility can be used to diagnose
an optimizer error. The problem can
then be corrected by modifying the
DML or optimizer access path (see sub­
rule 5.7) .

5.7E Users may control the selection of
the access path.

Direct user control of the access
path selected can be used to correct
optimizer errors and improve
performance.

5.8E The method and frequency (e.g.,
sampling, continuous, periodic, or on
demand) for gathering optimizer statis­
tics is DBA controlled.

The updating of statistics used by
the optimizer can be a costly operation.
Some systems perform continuous up­
dates, others only when a command is
issued, and some allow for sampling of
the table data. Depending on the size of
the database and the temporal distribu­
tion of critical transactions, one update
method may be more desirable than
another.

5.9E Aggregate functions are optimized.
DML statements in OLCP applications

contain a higher percentage of aggre­
gate functions than in OLTP applica­
tions. The optimizer should be able to
process aggregate functions efficiently
and without redundancy.

5.1 OE The optimizer can optimize all
active statements known to it

• within a transaction
• acrosstransactions

DML statements in an OLCP applica­
tion may access the same data multiple
times. The optimizer should be able to

detect this condition, cache the data,
and prevent premature swapping to
disk of the required data.

5.llE Indexes may be automatically
created:

• supports temporary indexes
• supports permanent indexes

The automatic creation of indexes on
read-intensive data can improve perfor­
mance. Of the few systems which do
this, most create temporary indexes
which are dropped at the end of the
D:-VIL statement or transaction.

5.12E 'The optimizer can distinguish
between and optimize appropriately for
various data value distributions.

Data value distributions are less
likely to be uniform in an OLCP applica­
tion than in other applications. Unless
data value distribution statistics are
maintained, the optimizer may incor­
rectly estimate the number of disk I/Os
required.

Continuous Operation and
High Availability

Rule 10. Efficient Database
Recovery

10.4E Supports DML and DDLjournaling
and recovery.

Journaling Data Manipulation
Language (DML) and Data Definition
Language (DDL) statements can be
more space efficient than journaling
data when set processing is common.
Also, if an error is made, the journal
can be edited and reapplied to a
backup. This is extremely important
following a media failure in a high­
volume update environment with large
numbers of on-line data entry users. In
such cases, re-running applications
may not be feasible.

10.5E Supports transaction monitor
supplied transaction numbers:

• journals the transaction number
• provides rollback to a specific trans­

action number

Database consistency does not re­
quire that the sequence of states of a
database reflect the sequence of states
of the applications environment at any
point-in-time. For this reason, some
means of identifying the order in which
transactions are submitted by applica­
tions is needed. A transaction monitor
usually supplies unique transaction
numbers for each transaction

submitted to the DBMS. It should be pos­
sible to rollback the database to a spe­
cific transaction in this order. In certain
on-line update intensive and highly con­
current environments this may be the
only way to manage the re-entry of data.

Architecture

Rule 14. No DBMS Imposed Limits

14.8E Unlimited (practical) number of
allowed joins.

14.9E Unlimited (practical) number of
tables referenced in a statement or
transaction.

14.lOE Unlimited (practical) number of
expressions in a statement.

14.llE Unlimited (practical) number of
subqueries in a statement.

14.12E Unlimited (practical) subquery
nesting levels in a statement.

14.13E Unlimited (practical) number of
cursors in an application or in the
system.

14.14E Unlimited (practical) number of
characters in a statement.

14.15E Unlimited (practical) number of
columns referenced in a statement.

The DBMS should not impose unrea­
sonable limitations on the complexity
of DML statements or on the complexity
of an application.

System Management Controls

Rule 15. Secure and Granular
Authorization

15.4E Network transmission between
clients and servers can be encrypted.

OLCP applications often involve data
which must be kept secure. If the DBMS
uses a client/server architecture with a
network or other communications sys­
tem interface. it should not be possible
to tap into the communications link and
intercept or simulate client-to-server or
server-to-client communications.

Processing Flexibility

Rule 18. Data Definition Language
Support

18.lE Temporary tables can be created
which are automatically dropped at the
end of the transaction or session.

The ability to create temporary
tables as "working data storage" is
especially important in complex trans­
actions and in ad-hoc and decision
support applications. It eliminates

28

unnecessary application coding and
communication between database and
application.

18.2E Database triggers are supported.
Business or application rules that

must be asserted against the database
should not have to be coded in each
application. Database triggers provide
a means of asserting these rules and
maintaining them within the database.
Ideally, it should be possible to specify
the event which causes a trigger to fire,
not only on any DML statement, but also
on a DDL statement and on utilities.

18.3E BLOBS, text, and image data types
are supported.

OLCP applications frequently require
storage and retrieval of non-standard
data types. Especially useful are Binary
Large Objects (BLOBs), text, and image
data types.

18.4E User-created or abstract data
types are supported with domain rules.

Support for user-defined (abstract)
data types is especially useful in an
object-oriented programming
environment.

18.SE Timestamps are supported.
A timestamp data type provides a

means of identifying the time and date
of the last update of a row. This pro­
vides a means of tracking update
events without explicit application code
having to be written. It should not be
possible to update the timestamp col­
umn directly using DML statements.

18.6E DDL statements can be used
within a transaction boundary and can
be committed or rolled back.

A database schema is subject to
frequent change in an OLCP environ­
ment and costly mistakes can be made.
Schema changes should, therefore, be
managed as transactions.

18.7ETables can be assigned a time
of creation, a date when valid and an
expiration date.

It should be possible to create a new
schema which becomes the effective
schema at a given date and time, and
becomes expired at a defined date and
time.

18.8ETables definitions can be automat­
ically assigned version numbers, and a
certain number of inactive versions can
be maintained in the database.

The tables modified in a schema
change should have version numbers

so that changes can be audited
effectively.

RuJe 19. Data Manipu]ation
Language Support

19.lE Data type conversion functions
can be used in a DML SELECr list.

When schema changes result in the
changing of a column data type, it
should be possible to use data type
conversion functions in the SELECT list.
Fewer changes then need be made to
the application code.

19.2E Potentially dangerous interactive
statements which meet an installation­
defined pattern are detected and re­
quire confirmation before execution.

In an OLCP environment which mixes
ad-hoc users with high-volume critical
applications, it may be necessary to
highlight mistakes made by ad hoc
users without actually denying the use
of any given DML or DDL statement. By
requiring confirmation from a user
before executing certain statement
types, unintentional errors can be
controlled.

19.3E Error messages are sufficiently
detailed to allow the end-user to debug
ad hoc DML statements.

Interactive users writing complex
DML statements need considerable help
in debugging errors. It is not sufficient
to produce a simple "syntax error" mes­
sage. Identification of the location of
the error and on-line help facilities
describing correct syntax for the state­
ment are required.

19.4E Informational messages such as
the number of data rows affected by a
statement, the processing time, and
the type of statement executed are
provided.

In OLCP applications, the conditional
execution of successive statements
may depend on the number of data
rows affected by the previous state­
ment. The system should provide a
means for obtaining this information,
as well as the type of statement exe­
cuted, and the time required to process
the statement.

19.5E Error messages can be logged
along with user-id, application-id, state­
ment, and a timestamp.

In high-volume environments with
large numbers of on-line users, some
means of analyzing errors by type,
user, application, date, and time is

necessary to make the system more
robust.

19.6E A means is provided to increment
a column value automatically during a
set insert or update operation.

OLCP applications often manipulate
data which has an intrinsic order. Such
data cannot be inserted or updated
using set operations unless an auto­
matic and internal mechanism is pro­
vided for generating sequence
numbers.

19.7E The results of a particular query
may be processed by successive que­
ries without explicitly creating a tempo­
rary table.

The ability to successively filter data
for subsequent operations is a common
requirement in decision support or
"browse and update" applications. The
application should not be burdened
with having to explicitly create tempo­
rary tables to hold inter.mediate results.

RuJe 20. Batch Support

20.lE Failed, idle, completed, or
aborted batch processes are automati­
cally detected and recovered:

• user definable timeout value
• error conditions detected

..
Batch as well as other processes

may terminate in a variety of ways. The
system should anticipate ill-behaved
termination with respect to the data­
base, detect it, and recover gracefully.
It should not be possible for system
resources to be consumed by such
processes.

20.2E Bufferpool sizes may be dynami­
cally configured to optimize input, inter­
mediate, or output processing.

Tuning the allocation of bufferpool .
resources is especially important in
batch operations. For example, an oper­
ation known to perform a large sort
with little input or output would com­
plete more quickly if most of the buffer­
pool were allocated to intermediate
processing.

20.3E Batch insert (page append) is
supported.

Certain applications require the in­
sertion of large amounts of data in
batch. This data should be accessible
in the database in one contiguous
piece. Furthermore, concurrency re­
quirements may preclude the locking
of significant portions of the target
tables involved. One way to get around

SDrin111/Sunonoer 1000

29

the problem is to support loading of the
data into a temporary table. All pages
of the temporary table are then allo­
cated to the target table in a single
operation and the the temporary table
dropped. This process is called "page
append."

20.4E A user determined batch size
(number of rows affected) can be set to
trigger an automatic checkpoint.

It should not be necessary to restart
batch processes from the beginning in
the event of a system failure. Issuing
periodic checkpoints and logging prog­
ress can help.

20.5E Both DML and DDL statements
can be included in batch processing.

Batch processing requirements can
be as complicated as those of any on­
line application. This is especially true
when some time "window" exists for
processing in batch without interfer­
ence to on-line applications. Systems
should, therefore, support the batch
submission of arbitrary DML and DDL
statements.

The Potential for OLCP

The combination of world market
pressures, growth of cottage indus­

tries and tele-commuting, increased
dependence on information, and rapid
technological advances, all conspire to
demand OLCP applications. At the same
time, OLCP database applications offer a
unique potential for today's businesses
by closing the information loop be­
tween the customer and the factory.
Businesses can, therefore, become
more responsive to the market, and the
time from application design to product
introduction can be reduced.

No single DBMS meets all the needs
of OLCP today. In fact, it is likely that
OLCP performance requirements will
exceed DBMS capabilities for some time
to come. One thing is certain - only
relational databases can meet the flexi­
bility requirements of OLCP.

References

1. C.J. White. "What is OLTP?" lnfoDB.
Spring, 1989.

2. D. McGoveran. "The Power of Stored
Procedures." Database Programming
and Design. September, 1989.

3. D. McGoveran. "Evaluating Optimiz­
ers." Database Programming and
Design. January, 1990.

