
6221A Graham Hill Road, Suite #8001, Felton, CA 95018 Telephone: 831/338-4621 FAX: 831/338-3113

Page
www.AlternativeTech.com mcgoveran@AlternativeTech.com

Copyright 2002 – Alternative Technologies, All Rights Reserved

1

On The Declaration of Integration

David McGoveran

 EAI has experienced something of a revolution since 1995. Prior to that time almost all

application integration efforts were point-to-point and highly custom efforts. Needless to say,

they were very costly. Perhaps only those of us who worked on such projects will remember

that they also required considerable effort to maintain. Without the benefits of a common

infrastructure, standard interfaces, integration brokers, and so on, function changes to

applications could easily damage the integration.

 By introducing standards and shared integration components, the level of abstraction

was raised and it became possible to consider strategies for large scale integration efforts.

While we may debate the relative benefits of various integration architectures (point-to-point,

hub, multi-hub, distributed, etc.), they each serve to separate the means of accomplishing a goal

from the goal itself. By creating integration services (messaging, data transformation, routing,

etc.) with well-defined interfaces, we begin to gain obtain the benefits of architectural

abstraction. Arguably, it is this encapsulation of generalized and reusable functionality that has

made the EAI revolution possible.

 As many have discovered, there are further methods by which we can improve upon this

abstraction. Rule-driven methods can be used to change the behavior of integration services.

Often changes can be made while systems are online, greatly lowering deployment time and

costs, and offering tremendous flexibility. For example, rule-driven routing enables

implementation and control of message flows without requiring shutdown, programming, or re-

deployment. As a further example, process model driven integration as found in a BPMS

(business process management system) takes this to a higher level of abstraction, enabling the

flow of business events and activities to be described and implemented graphically. Although

few BPMSs are so sophisticated, it is now clearly possible for someone with no knowledge of

computing to define and implement business processes.

 With every increase in the level of component abstraction and each move toward a

distributed services architecture, the ability to deliver a function with fewer design and

development errors has improved. This not merely a consequence of simple component reuse: It

is also one of making the relationships among components simpler so that they can be

combined more reliably.

 Certainly we have come a long way from the days when application integration involved

so much detailed work. Many mission critical applications were then developed with APIs, and

these had to be added to each program before communication between programs could be

6221A Graham Hill Road, Suite #8001, Felton, CA 95018 Telephone: 831/338-4621 FAX: 831/338-3113

Page
www.AlternativeTech.com mcgoveran@AlternativeTech.com

Copyright 2002 – Alternative Technologies, All Rights Reserved

2

considered. Adding an external API to a program that was not designed to have one was a

difficult task. It meant finding a place in the code that would provide access to data while

maintaining integrity and performance. Once this was done, all today’s familiar problems of

synchronizing data formats, semantics, and events between programs remained but were solved

through custom code rather than integration services. On the one hand, we now have the

advantage of being able to purchase packaged enterprise applications and so no longer have to

maintain these complex programs. On the other hand, we have given up access to the special

knowledge of internals and so are entirely dependent on the vendor to provide the appropriate

set of APIs.

 Even with all the advances, the fundamental problems that drove application integration

in the first place have not been solved. Initially, the need for timely response to business events

meant that batch data transfer between applications was unacceptable. As this problem was

solved, ever greater systems interconnectivity (including between businesses and with

consumers via the Web) encouraged a change in the nature of business requirements.

 Unthinkable a mere fifteen years ago, business managers now seek to permit consumers

and business partners to interact directly with business software systems in an effort to become

more responsive and presumably more profitable. Indeed, the drive to real-time business

interactions and increasingly fleeting business opportunities has created a need to for IT to

respond to rapid changes in strategic business requirements. In a sense, we are on the threshold

of a new world in which IT automation efforts move from well-defined business operations to

enablement of transient business strategies. Given the critical importance of this new

responsibility, we must understand how best to achieve it. Surely we cannot afford the to repeat

the costly software engineering mistakes of the past.

 There are a number of problems that have stood in the way of application integration,

and remain barriers to IT’s ability to respond to the new requirements of business.

 Resource Dependence

Every programmatic dependence upon the specific characteristics of a resource

introduces not only fragility, but an opportunity for error in translating business

requirements. There are several types of resource dependence that need to be avoided.

o Physical Data Dependence

Physical data dependence is dependence on specific data organization including

structure and location. There are many reasons that physical data organization

and their associated access methods may need to change. The trade-off between

storage efficiency and access efficiency is a well-known problem, so that

selecting one over the other may require a change to data organizations. There

may be many potential access methods for reading, modifying, destroying, and

creating, each of which has different performance and memory characteristics.

Ordinary encapsulation goes a long way toward solving the problem of physical

data independence, but does not provide selection of the best access method for

any particular data structure nor the more difficult problem of selecting the best

data organization. Solving these problems requires automatic selection via

optimization techniques.

6221A Graham Hill Road, Suite #8001, Felton, CA 95018 Telephone: 831/338-4621 FAX: 831/338-3113

Page
www.AlternativeTech.com mcgoveran@AlternativeTech.com

Copyright 2002 – Alternative Technologies, All Rights Reserved

3

o Logical Data Dependence

Logical data dependence is dependence on how data is presented to users and

programs. For example, introducing a new use of data often requires changes to

other programs. As long as no information is lost, including the logical

relationships among data elements, there should be no barrier to changing data

presentation for new users and new programs. Solving this problem requires a

standard data presentation model and means to translate operations on this

model into operations on any information-equivalent model such as the physical,

stored data.

o Platform Dependence

Platform dependencies include hardware and operating system dependencies.

Few software applications, whether packaged or custom, are impervious to

changes in platform. Device dependencies such as changing a monitor, printer,

or a disk drive, let alone a network, often led to serious application failures and

required subsequent program modification until the advent of standard drivers. It

is this type of dependency that has driven most of the interest in portability,

leading first to language and interoperability standards, and eventually to Sun

Java and Microsoft CLI. The problem is far from being solved, although we

certainly understand many principles that must be followed.

o Connection Dependence

Connection dependencies include dependencies on invocation methods, inter-

program communication methods, and inter-system communication methods.,

device connectivity, and precedence relations. Over the years there have been

tremendous debates (and many changed programs) over the relative merits of

subroutines, in-line procedure calls, remote procedure calls, asynchronous

messaging, and so on. Similar debates have ensued over the best physical

transport mechanism for inter-program and inter-process communication,

including protocols and physical resources. Connection dependencies abound in

most programs, although careful layering of code and standards have helped.

 Code Fragility

Code fragility refers to aspects of coding that are frequent causes of error and

maintenance. In the 1950s and 1960s, a number of studies were done to determine the

types of coding errors that were most commonly encountered. Among the most common

were errors of iteration control (such as coding or modifying loop entry and exit

conditions correctly), case control (whether coded using if-then-else sequences or case

statements), transfers of control, consistent data typing in assignments, levels of

indirection (address versus content), data initialization, and sorting. Let’s examine these

from the perspective of precedence relationships, complexity, and correctness.

6221A Graham Hill Road, Suite #8001, Felton, CA 95018 Telephone: 831/338-4621 FAX: 831/338-3113

Page
www.AlternativeTech.com mcgoveran@AlternativeTech.com

Copyright 2002 – Alternative Technologies, All Rights Reserved

4

o Precedence Relationships

Precedence relationships control the order of function invocation and

completion. These may manifest either directly through control code, or

indirectly through data states. Almost all coded order dependencies are

implementation-specific and so can only be checked for errors in the context of

the particular algorithms chosen by the programmer. Precendence relationships

of this type are closely related to problems of coupling and synchronization.

Another type of precendence relationship is inherent in the business

requirements. Changing precedence relationships like these almost always

requires changes to code, assuming they have been correctly coded in the first

place. The problems of enforcing and changing precedence relations within code

have not been solved. However, by expressing precedence relationships are rules

o Complexity

As system size grows, the number of errors increases non-linearly. That is, when

it comes to design and development, scalability fails. This fundamental principle

of software engineering is clearly related to inherent limits in human abilities to

conceptualize and remember numbers of entities at one time and in one context.

The solution to this problem is three-fold. First, abstraction (or “chunking”)

enables complex concepts to be treated as a single entity with understandable

interfaces and behavior. Second, orderly decomposition permits a complex

problem to be divided into manageable portions. Third, function generalization

can be used to reduce the number of such portions. Managing complexity is the

genesis of various attempts at efficient software engineering (including top-

down, structured design and object-oriented methodologies) as well as certain

popular architectural approaches such as componentization and service-

orientation.

o Correctness

Guaranteeing that code is correct is a difficult proposition. Traditionally we have

sought to prove correctness through a combination of error checking within the

code and software testing, both of which depend on completeness (no holes) or

coverage. Error checking tends to be limited to local state correctness, while

software testing is more focused on functional correctness (a right answer).

Neither is very adept at catching errors due to either run-time environment

changes or incorrect business requirements capture and translation during

design. Software testing is particularly sensitive to component interaction

complexity. When components can interact in almost any order, the ability to

test all possible sequences of invocation becomes impossible even when the

number of components is still quite small. One partial solution is to require that

components (especially distributed components) be stateless and that all shared

data be transactional, so that component testing is path independent. Functional

6221A Graham Hill Road, Suite #8001, Felton, CA 95018 Telephone: 831/338-4621 FAX: 831/338-3113

Page
www.AlternativeTech.com mcgoveran@AlternativeTech.com

Copyright 2002 – Alternative Technologies, All Rights Reserved

5

correctness can be enforced with integrity conditions or constraints, although

few developers are inclined to code assertions or constraints and object to an

imposed performance penalty for those checks.

 As noted, various techniques and technologies have been used to address these

problems individually. Unfortunately, although a particular language and development

environment may reduce some of the impact, all the problems stated above are inherent in the

use of procedural computer languages. By a procedural language, I mean one which requires the

developer to specify how to accomplish a task and with what resources. Procedural languages

have at least one of procedural constructs (such as conditions and control loops), physical

resource specifications (such as structured data definitions), or procedure definition and

invocation capabilities. As much as we all love to design and develop software systems, and as

much as our employers may enjoy paying for them, we have to find a better way to integrate

enterprise applications than the use of procedural languages.

 In overview, the use of procedural languages creates three major problems, broadly

speaking. First, the more procedural the grammar rules, the more difficult the language to learn

even if the language is graphical (consider modal versus non-modal graphical user interfaces).

Second and as discussed above, procedural elements tend to be the source of errors, causing

high maintenance costs and functional rigidity. Third, because procedural elements expose

physical organization and structure, changes to that physical organization and structure cause

costly and error prone maintenance efforts. Fourth, all these taken together mean that

integration using procedural languages does not meet today’s rapidly evolving business agility

requirements.

 Most general purpose languages are procedural, so that the user must know something

about physical implementations and specify precisely how to accomplish each task. If they need

to access existing data, they will need to know how that data is physically organized. Such

languages have a procedural element to them, meaning that they must be able to take advantage

of order. (If that’s not obvious, try to imagine the concept of “next” or “previous” data element

without those elements being ordered. Then try to imagine completely non-physical ordering.)

Of course, the average user won’t know how to use the procedural elements of a computer

language.

 Coming back to a point made earlier, rule-based integration components provide a clue

as to how to avoid these problems and deliver flexibility into the hands of those who need it

most. For example, dynamic rule-based routing provides the ability to direct a message to a

particular recipient conditionally based on message sender, time, content, and so on. In effect,

rules are a kind of declarative integrity constraint on valid message routes. These rules can be

changed or augmented without shutting the systems down and constitute a relatively simple

language to learn and use. Some implementations provide a graphical interface for managing

the rules. With a bit of careful implementation, messages correspond to business events and the

applications that constitute both senders and receivers are identified with specific business

functions. This raises the level of abstraction to something a business user might understand

and be able to use.

 Model-driven process integration goes beyond using business rules to control the point-

to-point message flows and enables control of entire processes. Implementing a process as a

complex collection of point-to-point is difficult to conceptualize, and may introduce process

integrity problems. By using a graphical process design tool to drive a process engine

6221A Graham Hill Road, Suite #8001, Felton, CA 95018 Telephone: 831/338-4621 FAX: 831/338-3113

Page
www.AlternativeTech.com mcgoveran@AlternativeTech.com

Copyright 2002 – Alternative Technologies, All Rights Reserved

6

(essentially a sophisticated rule-based message router), the level of abstraction is increased

further. If both the design tool and the process engine support process abstraction and process

independence, it becomes possible to implement business processes in terms of activities and

process flows that are understandable to a business user. Such a business process specification

is tantamount to a set of activity integrity rules that constrain the correct invocation and correct

completion of business activities, and a set of process integrity rules that define the precedence

relationships among activities. The system then translates the declarative specification into a

physical implementation with physical resources (based on a manually defined mapping in most

such products).

 The creation of declarative languages as an alternative to procedural languages was

driven in part by a desire to avoid (or at least reduce the impact of) the problems discussed

above. To understand the power of a declarative language, suppose that users could concentrate

simply on what they wanted to achieve rather than on how to obtain it. They would simply

declare the goal, with both the initial state and the goal being defined by constraints or

conditions. This approach requires that the system (not a user or programmer) automatically

translate the goal declaration into an optimized set of component procedures that are invoked as

needed, and produce a result guaranteed to achieve the declared goal. By contrast with

procedural programs, declarative approaches are much easier to understand, easier to write and

modify, and are much more succinct. Pure declarative languages have associated with them

none of the problems described earlier. Indeed, they obtain the very benefits that procedural

languages fail to achieve.

 The ideal declarative language for EAI would consist of two parts, one for declaring

integration goals and constraints, and one for specifying the characteristics of the physical

resources that could be used and object references (names). The execution engine would have

an optimizer so that resources usage could be optimized and a scheduler so that resource

conflicts would be avoided and load balancing achieved. It would access an active repository to

translate user references into physical references. Data mapping and transformation would

occur automatically as needed whenever one business function was the precedent of another.

The language would have nestable constructs and encapsulation enabling abstraction and

controlling complexity. The language itself is would be based on a closed algebra, so that all

expressions in it are provably correct and unambiguous.

 The example integration facilities just discussed have some of the important features of

a declarative language and therein lies their power to deliver on the promise of EAI. The view

of the system as seen by the user of a declarative language is in terms and units the user

understands. Declarative languages need to be semantically rich so that users can accurately

express goals. Indeed, a declarative language is all about semantics or intended meaning. The

software that processes a declarative user request must hide platforms, physical data

organization, and the procedures that manipulate that organization. This means the fundamental

operations must preserve information integrity – information is never augmented, altered, or

lost except in ways that are specified explicitly by the user.

 In recognizing that there is a difference between the way in which business functions

and events are most economically and naturally expressed and the physical implementation,

location, and names of those business functions and events, it is clear that a repository mapping

these is needed. Otherwise, users of the declarative language would be forced at some point to

know the physical implementations. Most uses of directory services (such as LDAP and UDDI)

6221A Graham Hill Road, Suite #8001, Felton, CA 95018 Telephone: 831/338-4621 FAX: 831/338-3113

Page
www.AlternativeTech.com mcgoveran@AlternativeTech.com

Copyright 2002 – Alternative Technologies, All Rights Reserved

7

fail to maintain complete separation of logical and physical, and in fact were not designed for

quite this purpose.

 When a language exposes physical data organization to the user, its declarative power is

degraded. For example, URLs are both hierarchical (and so have inherent order) and physical.

Worse, there is no semantic model by which a content goal (based on meaning) can be

translated into that physical location. XML and the languages and facilities that derive from

XML mimic this organization. Query languages for XML are replete with the language of

order: occurrences, sequences, paths, steps, descendants, children, and so on. Just because these

languages “have no procedures” doesn’t mean they are non-procedural (a naïve understanding

of “procedural”): if operation order changes results, the language is procedural. Even SQL now

has many procedural elements, its declarative power greatly diminished by the failure of

RDBMS vendors to implement physical and logical data independence.

 Its not that procedural languages aren’t useful, but we should limit their use because of

the high price we must pay. The types of facilities and operations required for an integration

infrastructure are now reasonably well understood, though the variety of implementations will

continue to grow. What is more important is that we now understand the business language that

specifies that integration: It is the language of business processes. Although we may not yet

have a pure declarative language for describing business processes, but we can take advantage

of declarative languages within the implementation of integration efforts. In addition to

declarative capabilities within integration tools, there are other opportunities. Certainly every

data integration and data transformation effort can use an RDBMS to great effect. Rules

engines can be used to avoid most procedural code, and there are now a number of rules-driven

development tools on the market. These tools generate or incorporate reliable procedural code

based on a declarative specification.

 We are now facing a future with high training, platform, and maintenance costs that are

aggravated by every use of procedural language. Question why a data transformation

requirement should be met with procedural language. Question whether or not you have

resource independence. Will falling back to a manual activity implementation when the

application server goes down break your process integration? If you are using web services for

integration, the next time you encounter a broken Web link or a page that no longer contains the

information pointed to, or have to change links or queries (whether SQL or X-Query) when you

reorganize your data, dream fondly of declarative languages. Better yet, insist on using them at

every opportunity.

.

