
MIDDLEWARESPECTRA

Volume21 Report4

Contents November 2007

2 “Middleware is software that nobody wants to pay for”
Tom Welsh, Tom Welsh Research

8 Agility and events
Keith Jones, IBM Software Solutions

12 Beyond ACID: an adpative approach to
transaction management
David McGoveran, Alternative Technologies

24 Model-driven application development
Peter Bye, Consultant
and Alan Hood, Unisys Systems & Technology

32 IDEs for middleware — a beginner’s guide
Trevor Eddols, iTech-Ed

40 Risk Management and middleware projects
Nick Denning, Strategic Thought

incorporating FINANCIAL MIDDLEWARESPECTRA

“Middleware is software

that nobody wants to pay for”

Tom Welsh
Director
Tom Welsh Research Limited

Management Introduction
Chris Stone, co-founder and first president of the Object Management Group (OMG),
used to remark that “Middleware is software that nobody wants to pay for”. As Tom
Welsh argues, far from being merely the complaint of a disappointed middleware
enthusiast, this is a rather deep observation which has serious implications for the mid-
dleware market.

Stone’s point was that making money out of middleware is an uphill struggle, because
end users (including many IT executives) do not see it as a desirable asset in itself. In
most organizations, middleware is not seen to boost the bottom line — or even the top
line. Although it can save large sums of money, and may make the difference between
the success or failure of large IT investments, this is obvious only to those who under-
stand how distributed systems work.

Like bitter medicine that is palatable only when sugar-coated, middleware is most likely
to be accepted when it is part of a complete application package. That is why systems
integrators and major IT systems vendors have always been among the leading buyers
of advanced middleware. Their purchases, while often substantial, are rarely publicized.

As a result, middleware is generally perceived as complicated, expensive, boring, or
even irrelevant. Worst of all, its very existence may be overlooked.

2

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2007 Spectrum Reports Limited

Making middleware
profitable: an elusive goal
In the past 40 years dozens of distinct types of middleware,
and hundreds or thousands of middleware products, have
emerged. Yet only a fraction of these have survived long —
and only a handful have been serious commercial suc-
cesses. Why is this?

One reason is that, for most people outside the computer
industry, software is an impenetrable mystery. Even the
media fail, more often than not, to give software its due.
How often have we read, or heard on TV or radio, of a new
‘computer’, when what was really meant was a computer
system, or a distributed system made up of numerous com-
puters?

Worse still, the computer is widely seen as a ‘black box’
whose unpredictable actions are not attributable to any
human agency. Even intelligent, well-read individuals do
not always understand how all the information held by the
Web can be crammed into a computer. This is because they
do not know about software, still less about networks, and
how these work.

As a wise cynic once observed, the perceived value of any
piece of software tends to be inversely proportional to its
distance from the end user’s eyeball. (This is the principle
behind the runaway successes of Windows, the Apple
Macintosh and the Web). An obvious corollary is that soft-
ware will be deemed unimportant, or completely ignored,
if it lacks any obvious relevance to attaining desired busi-
ness objectives. Every experienced salesperson knows that
‘perception is all’. Nowhere does this rule apply more
strongly than in IT procurement.

Another familiar sales maxim is that ‘people buy holes, not
drills’. In this sense, unfortunately, middleware is the quin-
tessential drill. Qualified architects and experienced crafts-
men understand its value — indeed, its necessity — but
they comprise a small fraction of the overall market. More-
over, precisely because they are so well-informed (and
because they must absorb their own costs), they are
unlikely to pay premium prices for even the best of prod-
ucts.

Making an impact
On most occasions when middleware has been sold prof-
itably, it has been because it yielded unmistakable end user
benefits. For example Teknekron, the forerunner of TIBCO
— one of the great specialist middleware companies —
found that its Information Bus sold very well in the world’s
financial markets because of its ability to ‘get rid of’ many

of the terminals that cluttered dealers’ desks, replacing
them with just one. It also used techniques — such as
failover — to provide reliable information feeds. So useful
were these improvements to the dealers that corporations
were happy to pay for the new technology.

Similarly, the Web was the first form of middleware that
allowed a single GUI to be used for accessing local and
remote computers, whether on a LAN or around the world.
Web Services, for their part, automate the labor-intensive
activity of Web browsing — saving much time and effort.
Today, SOA and BPM — the most recently fashionable
types of middleware — owe much of their popularity to the
alluring prospect of automating business processes.

If, then, middleware is so hard to market profitably, why do
so many companies go on trying to do so? There are sev-
eral possible reasons. Middleware enjoys high prestige in
the technical community; many software vendors are keen
to position themselves as ‘technology leaders’. More prag-
matically, middleware is an invaluable ‘fifth column’ which
when cunningly marketed can help a vendor to infiltrate its
customers’ IT architectures, establish lock-in and shut com-
peting suppliers out. Big players such as HP, IBM,
Microsoft, Oracle and Sun are particularly apt to pursue this
kind of middleware strategy.

A copybook success story: Microsoft
A study of the software market — and middleware is no
exception here — shows that many companies fail because
they take their eyes off the ball. The ultimate goal of any
company is to make a profit, the bigger the better. In the
long term, a company should aim to maximize its overall
profit, and this must entail expanding its market share as
much as possible.

Yet many software suppliers allow themselves to become
side-tracked by:

� creating the biggest, best and purest
architectures

� embarking on eye-catching but expensive
projects

� outdoing their most obvious competitors.

All too often they run into delivery and/or cash flow prob-
lems, back the wrong horse or become over-ambitious and
fail to deliver. Yet one company has done an outstanding
job of keeping its eye on the ball for over 30 years. It is, of
course, Microsoft.

Rarely accused of excessive technical perfectionism, it has

“Middleware is software that nobody wants to pay for”

3

assiduously entered new markets, increased its market
share and, wherever possible, expanded its markets and
market reach. While carefully recruiting the best employees
and developing hundreds of software products, it has
always put financial stability and growth first. With the help
of a certain amount of luck — which, we should remem-
ber, favors the well-prepared — Microsoft has enjoyed
unprecedented growth.

Ten years ago it overtook IBM to become the world’s
biggest software vendor. Now it has no serious rivals in the
pure software business.

Microsoft has evolved a marketing strategy that gives it
many advantages. First of all, its product line encompasses
almost everything needed by consumers or businesses. It
offers:

� an operating system (Windows)
� an office automation suite (Office)
� a Web server (IIS)
� a Web browser (IE)
� a database (SQL Server)
� a comprehensive software development suite

(Visual Studio).

The .NET Framework, Microsoft’s answer to Java EE and
Java SE, is either shipped with Windows or comes as an
easy add-on option. But whereas Java EE constrains devel-
opers to code in Java, while allowing them to deploy on
almost any operating system, the .NET Framework con-
strains them to deploy on Windows, while giving them a
choice of programming languages.

Even more important than Microsoft’s ‘full spectrum’ soft-
ware marketing strategy is the sheer size of its customer
base. There will be 1 billion PCs in use worldwide by the
end of 2008, according to Forrester Research, and 2 billion
by 2015. Of these, some 95% or more run Windows.

As of 2006, IDC reported that Windows had almost half of
the global server market as well. With hundreds of millions
of customers, any product that achieves reasonable pene-
tration of that base is more or less guaranteed to sell tens
of millions of copies, bringing in revenue on the order of $1
billion.

For these reasons, Microsoft has far more freedom in its
marketing strategy than the average software vendor. If it
wishes, it can introduce a new product completely free of
charge, simply by ‘bundling’ it into Windows — as was
notoriously done with IE. Microsoft has consistently pur-
sued such a strategy, no doubt reasoning that it stands to

gain most in the long run by making Windows as attractive
and cost-effective a platform as possible (arguably the price
of Windows Vista today is little more than Windows 3.1
some 15 years ago, yet Vista is vastly more capable). This
has entailed ‘giving away’ some middleware such as COM
and COM+, and offering others at low prices.

Today almost all of Microsoft’s middleware — in the shape
of Windows Communication Foundation (WCF) — has
been folded into the .NET Framework which comes free
with Windows. Instead of making money directly through
middleware sales, Microsoft uses middleware as a lever to
increase its share of the mobile, desktop and server mar-
kets — the best way to maximize its profits in the long
term.

By the end of the 1990s, Microsoft had internalized the les-
son of the Web: that the whole world would henceforth be
linked by a single ‘network of networks’, in which everyone
could participate freely. That was when it gave up its
efforts to overcome the Internet, the Web, Java, CORBA,
and other industry standards — and decided “if you can’t
beat ‘em, join ‘em”.

The new approach, roughly speaking, was to support the
most popular standards but to aim at influencing them
from inside rather than defeating them from outside. One
way in which this played out was calculated to astonish
seasoned Microsoft watchers: the decision to work closely
with IBM on a whole new framework of specifications gov-
erning Web Services (and, in due course, SOA).

Standards: cannot live with
them — cannot live without them
Back in the 1950s, 1960s and even 1970s vendors —
mostly IBM — made their own standards. Among the best
middleware examples are CICS (1968) and MQSeries
(1993), both of which are still going strong. System Object
Model (SOM) sank like a stone, though, as did OpenDoc
and Taligent (both collaborative efforts with other compa-
nies).

Microsoft made COM ubiquitous by bundling it with Win-
dows, but was not above imitating successful IBM products
like MQSeries (MSMQ) and CICS (MTS/COM+). Its latest
effort is .NET, which exhibits a considerable degree of orig-
inality.

Other classic vendor-created de-facto middleware stan-
dards include AT&T’s Tuxedo and Sun’s Java. The latter,
however, is now managed by the Java Community Process
(JCP) rather than Sun.

4

From a software vendor’s point of view, the desirability of
vendor-neutral industry standards is a complex question.
Users gain from them, if only because it becomes easier to
abandon a poor product and migrate to a similar one that
complies with the same standard.

Rather less obviously, standards also favor most vendors —
with one exception, those of the established leader (whose
products, having been designed years ago, are almost
always incompatible with the standard). Last but not least,
standards help everyone to work more quickly and effi-
ciently, and it is risky to oppose them too obviously.

The problem, then, becomes one of controlling standards
— rather than being controlled by them.

Language and database standards, published from the late
1950s until the present day, were instrumental in the rapid
expansion of those markets. Networking standards allowed
all types of computer to interoperate, which initially
annoyed and frustrated vendors but was later seen to be
broadly advantageous. The 1980s saw the first important
vendor-neutral middleware standards — including NFS,
DCE, CORBA and XA. The Web (1990) was arguably the
biggest breakthrough of all — beating even TCP/IP, which
it required.

By the early 1990s, just as Stone was coming to the conclu-
sion that “middleware is software that nobody wants to
pay for”, free (or at least very inexpensive) middleware was
already on the way to taking over the world. From the
point of view of anyone looking to make big profits by sell-
ing network software, TCP/IP was the kiss of death. As
early as 1982, the US Department of Defense mandated
the new protocol suite as the standard for all military com-
puter networking. Driven by energetic UNIX start-ups like
Sun Microsystems, TCP/IP grew more and more popular
throughout the 1980s, and swept to world domination
with the popularization of the Internet in the early 1990s
(both DECnet and SNA were among the more obvious vic-
tims).

Once every Windows PC had a TCP/IP stack — as well as
those built-in to UNIX and other workstations and servers
— neither proprietary networking systems nor the OSI for-
mal standard had a chance. Why pay for a minority net-
working system, with an uncertain future and expensive
support, when you could join everyone else in what was
essentially free networking?

TCP/IP’s advantage was further accentuated by the advent
of the Web. Its transport protocol — HTTP — runs on top
of TCP/IP.

By now vendors hardly knew which way to turn, or which
way was up. How could they best recapture the revenue
streams that had once flowed so freely back in the days
when each customer was locked in to buying those prod-
ucts written specifically for his or her computer’s hardware
architecture?

On the one hand, it looked as if TCP/IP and its host of trans-
port protocols had squeezed all the profitability out of the
networking business. Instead of vendors having the upper
hand in setting standards, that function had been usurped
by self-appointed groups of technical experts — such as
the IETF and W3C. Microsoft, for one, spent a great deal of
time and money trying to persuade consumers to forsake
the Web and use its own closed, proprietary network
instead. Less flexible companies like AOL and Compuserve
persisted in that futile attempt for many years, with ever-
dwindling customer bases.

The new dispensation:
IBM and Microsoft take over
When looking back on the 1990s, one can see it as an era
characterized by competing middleware standards and
would-be standards. On the whole, neither proprietary de-
facto standards — such as CICS, MQSeries or COM — nor
vendor-neutral standards — like CORBA and the Web —
could gain a decisive advantage. By the end of the decade,
the two big winners looked like being the Web and Java:
this was not good news for Microsoft.

Realizing that it was outgunned, Microsoft ‘upset the
board’ — and began a new game with completely different
rules (which is almost always a reliable strategy for the
biggest player in any marketplace). In future, the word
came down from Redmond, distributed objects like CORBA
and Java were out, and XML Web Services were in. This
majestic volte-face was meticulously timed to coincide with
the launch of .NET in summer 2000.

To everyone’s astonishment, IBM joined Microsoft in advo-
cating and steering Web Services. Suddenly it was Sun’s
turn to become the outsider (and, in its behavior, it duly
obliged).

What was the thinking behind this new development,
whereby the world’s two biggest software vendors began
assiduously working through standards consortia? IBM’s
Bob Sutor, speaking at the first Interoperability Summit in
December 2001, summed up IBM’s view of the matter. As
reported by Alan Kotok1, Sutor put his cards on the table.

“To achieve this vision [enterprise Web Services] will require

“Middleware is software that nobody wants to pay for”

5

an unprecedented degree of co-operation and co-ordina-
tion among standards groups, and it will also require many
groups to change some of their long-standing operations.”
IBM’s experience with developing the early Web Services
specifications showed that it could shortcut the usually
lengthy standards processes without sacrificing technical
quality. Sutor said he still expected to involve the traditional
standards groups in the development process, but IBM
would not be tied to the extended timetables that many
groups have used in the past.

Sutor also said IBM still expected high quality results —
‘weeding out the junk’ — but he wished to see standards
groups working with Open Source communities as well as
co-ordinating their activities to obtain architectural consis-
tency. In addition he expected the work of standards
groups to implement reality checks — by having as many of
the technical decisions as possible made by industry repre-
sentatives.

IBM and Microsoft submitted SOAP 1.1, the fundamental
Web Services specification, to W3C in 2000. WSDL fol-
lowed in 2001.

But then the two vendors abruptly changed course and
handed UDDI to OASIS instead, where the groups working
on ebXML and UBL began to show interest in Web Ser-
vices. In 2002 W3C set up a Web Services Activity with sev-
eral subsidiary Working Groups. Nevertheless, IBM and
Microsoft continued to favor OASIS — handing over to it
WS-Security, WS-Transactions, WS-Coordination and
BPEL4WS.

By mid-2004 there were already over 100 specifications
and standards closely related to Web Services, and still the
flow continued. In a 2004 paper entitled “Standards for
Service-Oriented Architecture”, Scott Dietzen, then CTO of
BEA, listed some of the specifications, protocols and pro-
gramming models that he considered important for SOA at
that time. Starting with ‘the WS-* family’, he moved
on to:

� the Java APIs for Web Services
� W3C’s XML family of specifications
� ‘metadata and JSR-175’
� BPEL, BPELJ and JPD
� xQuery
� Java Web Services and JSR-181
� EJBGen and EJB 3.0
� XMLBeans
� XScript
� page flow for Java and Struts
� portlets

� WSRP and content management
� server-side ‘Controls’ (JPF, JPD, BPELJ).

This lengthy shopping list was — and is — just the sort of
‘approach’ that IBM and Microsoft (as well as other big
vendors) love to see their customers asking to be delivered.
It favors the ‘rich’.

As early as 2002 confusion was growing, as it became
obvious that Web Services were failing in their primary goal
of guaranteeing simple interoperability between different
platforms. Consequently IBM, Microsoft and seven other
companies set up the Web Services Interoperability Organi-
zation (WS-I). Explicitly rejecting the role of a standards
body, WS-I aims to provide profiles, sample implementa-
tions and guidelines. Rather than issuing standards, in fact,
it is in the business of telling implementers and users how
to make existing standards work properly together.

Today, W3C continues to refine its ideas and specifications
for Web Services and SOA. Meanwhile, OASIS has:

� no fewer than 16 committees focused on Web
Services

� another ten working on SOA
� several dedicated to relevant security specifica-

tions.

In August it (OASIS) announced the formation of yet
another six committees to ‘simplify SOA’ by advancing
what is now known as the Service Component Architecture
(SCA). Interestingly enough, although SCA is being sup-
ported by IBM and over a dozen other major vendors,
Microsoft is not involved. But this in no way diminishes its
commitment to Web Services and SOA.

Meanwhile, the more vendor-independent consortia —
such as IETF, W3C and OMG — continue their valuable
work maintaining and improving the Internet, the Web and
other forms of middleware. But Web Services and SOA —
definitely the middleware of the 2000s so far — remain
firmly in the control of IBM and Microsoft, even though all
the specifications are passed through OASIS or W3C for
approval. Perhaps this is the inevitable compromise
between the vendor-imposed standards of old and the
unduly controversial vendor-neutral standards of the
1990s.

Management conclusion
Trial and error is the software industry’s modus operandi.
The minds of the software industry seem incapable of tak-
ing in the full scope of the problems facing business (and

6

individuals), let alone coming up with ideal solutions first
time.

Instead, as Mr. Welsh describes, the scene is one of hun-
dreds of independent or partially-collaborating groups,
each tackling some particularly challenging problem —
‘scratching an itch’, as it has been said. As time goes by,
thousands of techniques and pieces of code pile up, pro-
viding a marvellous source of ideas for future pioneers.
Thus it was that Tim Berners-Lee devised the Web, by glu-
ing together the separate concepts of hypertext (55 years
old at the time), markup language (30 years old), and the
Internet (20 years old).

IT is now entering a period when a great deal has been
learned about middleware. Many attempts have been
made to design the ‘ultimate middleware’, leading to the
unsurprising discovery that there is no such thing. You can
have more performance, but only at the cost of less flexibil-

ity (and probably higher price). Tight security can be
imposed, but the consequences include reduced perfor-
mance and ease of use, and much higher prices.

Despite what some extremists have been saying, distrib-
uted objects are suitable for close-knit systems that fre-
quently exchange small packets of data — especially when
designed by a single agency. On the other hand, XML Web
Services excel in open networks where many indepen-
dently-designed systems must work together as best they
can. And so on.

More than ever, middleware is the ‘software that nobody
wants to pay for’. But that is mostly because it is every-
where, and we have come to take it for granted.

1 http://www.xml.com/pub/a/2001/12/12/kotok.htm

“Middleware is software that nobody wants to pay for”

7

Agility and events

Dr Keith Jones
IBM Software Solutions Worldwide

Management introduction
In the current business environment, where companies are under increasing pressure
not only to increase revenues but also to respond more quickly to changing market
conditions, business enterprises will be successful only if they transform themselves and
become more agile. Increasingly there is a focus on integrating business and IT strate-
gies so that both can respond more readily to opportunities and threats as these are
recognized. Componentization of both business and IT domains, a converging interest
in modeling before execution and service orientation, are just some of the ways in
,which this integration is being approached. But is this enough?

Many companies have now identified key business services and are beginning to realize
the value of building a Service Oriented Architecture (SOA) that enables services to be
deployed quickly and enables flexibility within business processes for creative change.
But some have already gone further in their quest for agility.

In this analysis, Keith Jones reviews the ways in which business events are being added
to business services to provide a more dynamic form of agility, one that enables orga-
nizations to:

� change their business processes on-the-fly
� capitalize on market opportunities
� counter threats that might otherwise go undetected.

8

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2007 Spectrum Reports Limited

Agility
Agility has become the center of focus for many in the IT
industry. This focus is in direct response to increasing busi-
ness demand for IT responsiveness plus the realization that
many enterprise Information Systems have become
extremely complex, difficult to extend and expensive to
change. From the parochial IT point of view, becoming
agile is fast becoming a matter of survival.

But becoming agile is not just about developing software
more efficiently, using extreme programming methodolo-
gies and other concerns inside the IT-box. It is more funda-
mentally about the flexibility that enables business leaders
to change the direction for an enterprise when opportuni-
ties arise or competitive threats are perceived.

Business strategy for many enterprises is increasingly
dependent upon agility in the marketplace. In the face of
competition from around the world many corporations are
basing their strategies upon an ability to respond quickly to
new growth opportunities as well as becoming more effi-
cient at bringing products and services to market.

The pace of this change is quickening for most. Thus pres-
sure is mounting upon IT departments to accelerate their
response to demands for innovation and change. Yet tech-
nology has continued to evolve at a rate that many believe
has been too fast for most enterprises to exploit.

The question for IT strategists is, therefore, how best to
exploit available technology to achieve the agility required
within the bounds of acceptable risk. In this climate of
adjustment, SOA has become the de facto prime answer to
this requirement in recent years. Many organizations are
now benefiting from their first generation of SOA deploy-
ment projects. Some boast advantages in both time-to-
market and cost-reduction for new business capability —
delivered as services. Business services have become the
focus for those most convinced of the power of SOA.

The basis for much of the agility achieved by adopting SOA
is the identification and realization of business services that
can be re-used in a number of different contexts. Any given
business service might be used in several different business
processes. The relative cost — in both time and effort — is
reduced with each re-use.

At the same time there is an overall reduction in complexity
associated with building systems using loosely coupled IT
components that implement well encapsulated logic and
information service providers (Figure 2.1). A service bus
(also known and as an ESB or Enterprise Service Bus), with
registry and standard service interfaces, provides much of

the technology for loose coupling between service compo-
nents.

The tools needed to provide the agility afforded by SOA
must facilitate modeling based upon business semantics
that are later incorporated into business logic (Figure 2.1)
— as it is realized in a form that can be deployed into the
supporting middleware infrastructure. The semantics
should also provide the basis for meta-data. This is vital
because this is used to implement mediation logic deployed
in the service bus to automate transformation, routing and
management of service interactions.

Much of the functional capability required to achieve busi-
ness goals can, therefore, be implemented using the SOA
approach outlined. Once business process logic has been
modeled, assembled, deployed and managed according to
well defined policies, a certain level of agility in both the IT
and business domains will likely be achieved. Nevertheless,
this takes significant planning, executive resolve and pro-
fessional skills to realize in typical enterprise scenarios.

Reaching the next level
Realizing a component-based IT strategy using SOA is a
positive first step in achieving agility in an organization. Yet
many strategists are recognizing that the next level of
agility can only arise from making changes dynamically to
business systems (and their IT implementations) in response
to changing market conditions, efficiency goals and threats
to competitive advantage.

A number of different approaches might be taken in order
to reach this next level. For example, exposing business
rules so that they can be modified as business processes are
operating is an approach being used by enterprises in the
retail and travel industries. But exposing business rules and
other configuration details is not yet sufficiently evolved to
attain an automated approach to dynamic change/control.

The missing components are business events. These are the
mechanism for: detecting that significant state changes
have happened on-the-fly within a business system and
determining what action should be taken and when.

Once a course of action has been decided, rules — and
process meta-data — can be adjusted dynamically to
optimize business process operations and to defend
against threat situations.

Business events may be added to an SOA by creating a
layer of event producer components closely related to exist-
ing service components (Figure 2.2) together with a layer of

Agility and events

9

event consumer/processor components which are able
dynamically to adjust business process rules and control
parameters. This effectively introduces a feedback loop
which is able to deliver the agility of business processes and
that automatically can adjust those to what is needed for
near-optimal business efficiency.

[It also worth noting that this feedback loop may be similar
in effect to, but more dynamic than, the ‘monitor-model-
assemble-deploy’ refinement process that may be applied
to services used to implement business processes in an
SOA. In this process, business activity monitoring (BAM)
provides feedback that may be used to fine-tune business
rules and process meta-data on a timeline that is faster
than original service development but slower than dynamic
business event processing.]

Adding business events
Business events may be added to many different kinds of
enterprise systems, both SOA and non-SOA. An initial,
rather obvious, requirement is that all state changes occur-
ring within business-critical processes are fully understood
and KPIs (Key Performance Indicators) are fully docu-
mented.

Once this has been achieved, some form of sensitivity
analysis must be performed to understand the relationships
between the business rules, state transitions and the rele-

vant KPIs. Only when this knowledge has been captured
can business events be introduced for full effect.

Sensors must then be introduced into the business logic, or
the middleware infrastructure that supports it, to capture
the state changes as business events occur (Figure 2.3). As
events are produced, some amount of contextual informa-
tion must be captured as well as the critical information
about the state change that has just occurred. For example,
if an end user has just ordered a product on a Web page, it
is desirable that a business event be produced for later pro-
cessing.

Business events may be produced for specific consumers
or, more generally, for any consumers that have registered
an interest in specific state changes. This level of decou-
pling may be implemented using an event bus together
with an event registry containing meta-data about events,
producers and consumers.

Events may be created/emitted in streams according to:

� their source context
� the state changes captured
� a specific window of time
� or some combination of such factors.

The event bus is the middleware component that logically
composes these streams, by collecting events from one or

Figure 2.1: Essential service components

10

more producers — once consumers have registered their
requirements. An event store is often included in the con-
figuration when consumers require delayed access to
events or sophisticated correlation between streams.

Event consumers are the ‘end points’ in an event process-
ing network where business events are filtered, trans-
formed, enriched, aggregated and logged into persistent
storage. Each consumer must register for specific events or
specific streams of events so that the event bus can effec-
tively route key business information to business process
controller/optimizer logic. The consumer logic is based
upon the business semantics needed to recognize the sig-
nificance of certain individual events, combinations of
events or specific sequences of events (Figure 2.3).

The sophistication of certain event consumers may be sur-
prising to some. Whilst it is possible to create simple con-
sumers that count or detect single event types, business
agility demands complex correlation of (possibly) multiple
event streams to detect:

� trends
� violations of business rules
� the absence of critical events
� ‘situations’ that require immediate corrective

action.

Such situations might include fraudulent manipulation of

valuable resources, such as financial instruments.

Event processing may also be extremely resource intensive.
Each event produced might be laden with large amounts of
data. Seemingly, best practice is to create events carrying
the smallest volume of data needed to satisfy require-
ments. This, however, sometimes leads to unwanted con-
straints on potential consumers that have yet to be
identified.

The number of different events produced can also become
a burden on infrastructure resources. Best practice is always
to produce the minimum number of events required to
provide the agility needed.

To realize, therefore, the best possible re-use of event types
over time in an event processing network it is important to
discriminate closely between candidate state changes and
resist the temptation to create composite events at source.
If composite or aggregated events are needed, they should
be created down-stream by event mediators in the bus —
or by event consumers at end points in the network.

A third consideration is the amount of computing power
required to process each event. In most real-time applica-
tions and graphical user interfaces the rule of thumb is that
event processing must be kept to an absolute minimum.

However, in sophisticated business process optimization
applications, the amount of computing power required per

Figure 2.2: Business event processing layers

Agility and events

11

event can become significant. Some of the power required
is needed to filter and route events according to complex
sets of rules.

Tools-generated code or rules engine technology are often
the best way to apply the necessary logic at an affordable
average cost per event for this function. Events in filtered
streams must then be matched and behavioral patterns
detected. This is often best achieved using algorithms
implemented in available highly optimized pattern match-
ing engines.

Finally, once patterns have been detected and situations
recognized, actions must be taken in the processing of
events. This could be creation of additional composite or
complex events for further down-stream processing or
manipulation of process metadata in order to affect
change in the way a business process is operating. The total
amount of computing power required per event may
indeed be quite considerable in these applications.

Services, events or both?
Since enterprise Information Systems must properly repre-
sent the real world interactions that characterize everyday
business operations, it would be reasonable to expect inter-
actions between IT components to mirror the real world as
closely as possible. But the interaction models supported by
services and events are completely different and so it is nat-

ural to ask which is most likely to produce the agility
required.

Service consumers generally interact with service providers
synchronously using a request/response protocol that is
similar to RPC. Although this is true of most SOA deploy-
ments, the service interaction model actually also supports
asynchronous one-way notification protocols as well as
simple request/response. This enables service components
to interact in a number of different ways (even though
these are not often exploited in SOA implementations).

In contrast, event producers and consumers generally inter-
act asynchronously using one-way notification protocols
that are similar to publish/subscribe (pub/sub). Although
this is true of most event deployments, the event interac-
tion model also supports request/response ‘pull’ protocols.
There is considerable potential overlap here between the
service and event interaction models — as implemented by
the many available vendor middleware solutions.

Service requests (and responses) are most often imple-
mented as messages with an XML-based representation of
data flowing over a service bus — even though this is not
the only possible implementation in an SOA. Similarly,
events are also often implemented as messages with an
XML-based representation of data flowing over an event
bus although, once again, this is not the only possible
implementation.

Figure 2.3: Essential event components

12

This close match between service and event implementa-
tion strategies leads to the obvious notion that some events
may trigger service invocations and that some service com-
ponents may well act as event producers. Figure 2.4 shows
this with a convergence perspective.

The advantage of this convergence is compounded if tools
supporting such a middleware infrastructure also support a
common set of business semantics for modeling, realiza-
tion, deployment and management of both services and
events. In addition, such tools might also support the devel-
opment of mediator logic (not shown in the bus in 2.4) that
transform, enrich, aggregate and route service and event
messages in an integrated and consistent manner.

Management conclusion
Agility is really not just about how quickly new business
logic can be developed using extreme programming or sim-
ilar methodologies. It is about how quickly a business can
change its strategy to take advantage of new opportunities
— or react to competitive threats — in today’s increasingly
dynamic global marketplace.

How best to develop business agility has become a prime
focus for many IT departments as they develop and main-
tain complex operational information systems in support of
critical business processes. For many, the advantages of
SOA have already satisfied at least some of their agility

requirements. Yet, for most, SOA is still a promise that has
yet to be fulfilled. SOA, once implemented, can provide
dramatically reduced time-to-market and reductions in IT
costs as new business services are composed, deployed and
then re-used in creative ways. But, as currently conceived,
SOA deployment may not achieve the ultimate in agility —
namely dynamic reconfiguration of and optimization of
business processes as they are in-flight conducting every-
day business transactions. Some organizations are already
taking this next step in their quest for business agility.

By adding business events to their business services such
corporations are able dynamically to process streams of
events that carry information relating to in-flight business
activities, key performance indicators and suspicious activi-
ties that may be a threat to business integrity and competi-
tive advantage.

From an IT perspective, business services may be imple-
mented using SOA methodologies and technologies but a
different approach is currently taken for implementing
business events. This may simply represent a temporary dif-
ference in focus amongst industry thought leaders and
technologies available from middleware vendors. Neverthe-
less, there appears to be sufficient common ground to sup-
port a convergence of methodologies and technologies at
the conceptual/semantic level, as well as at the logical com-
ponent and implementation levels, so that agility becomes
more accessible to more enterprises over time.

Figure 2.4: Converged service/event middleware infrastructure

Agility and events

13

Beyond ACID: an

adaptive approach to

transaction management

David McGoveran
President
Alternative Technologies

Management introduction
Fewer and fewer IT people find phrases like ‘transaction management’ meaningful.
Transaction management software — which has responsibility for transaction integrity,
scheduling, logging and recovery — is, today, more or less denigrated in many IT shops.
Increasingly, transaction management issues are left to application developers.

When an interaction is perceived as ‘transactional’, design and control often ignores
other applications. Transactions may be created merely for recoverability. Fewer and
fewer developers understand transaction principles like isolation or integrity, or how a
transaction manager might streamline development and improve efficiency and robust-
ness.

In this analysis, David McGoveran examines a new approach to transaction manage-
ment that addresses these challenges and how they have evolved. Called ‘Adaptive
Transaction Management’, this patented technology involves re-thinking transaction
motivations and fundamentals. In the analysis he describes a portion of the new model
and contrasts it with traditional thinking. (Due to space limitations, this description can-
not be a complete statement of all the models or principles; but there is sufficient to
convey the concept and how this addresses key problems.)

14

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2007 Spectrum Reports Limited

Driving forces
Two driving forces lie behind the shift away from interest in
transactionality. They can be identified as:

� programmatic transactional control
� an apparent divergence of business requirements

from traditional transactional models.

Programmatic transactional control is where transaction
processing was intended to act as an enabler complex for
distributed transaction processing applications and their
integration. The democratic chaos of programmatic trans-
action control has, however, had unintended conse-
quences. Essentially it has disparaged uniform, centralized
control while putting tremendous power (for example, pro-
grammatic choices) in the hands of diverse untrained and
often unsuitably authorized and/or undisciplined develop-
ers who have not known how to incorporate disparate
transaction models. Too often the result has been to pro-
mote the notion that transaction management is either
easy or else offers little benefit.

The second driver is the apparent divergence of business
requirements from traditional transaction models. Today’s
business transactions often violate some of the assump-
tions that characterize traditional transactions. (These
include using a few relatively simple statements, access or
modification of a few data records, few resources affected,
short execution times and single authority control. If
observed these meant that a single resource manager [see
below] was feasible.)

One of the difficulties is that distributed transactions are no
longer the province of a single business entity that can
mandate a workable distributed transaction processing
strategy. Indeed, nested transactions are more common.
Distributed transaction components are both geographi-
cally dispersed and separated by significant, perhaps asyn-
chronous, communication delays so that any concept of
two phase commit is unrealistic. Compensation, though
popular, frequently devolves into a difficult set of custom
procedures that make applications brittle.

In essence, business transactions have changed. Business to
business transaction requirements involve multiple resource
owners and authorities. Business processes, negotiations,
contingencies, searches and optimizations (for example,
finding the best price) involve long running transactions.

Furthermore, today’s transactions require data that no
longer resides in one species of managed data store, but
might be accessible only by Web search. Similarly, the
assumption of data consistency and compatibility in a read-

only environment — perhaps reasonable when data was
uniformly controlled — cannot be relied upon to be valid.
Business activity monitoring combines multiple, integrated
data sources with complex analysis and decision processing
It usually accepts potential consistency and repeatability
resolution as the price of a timely, online view of a business
activity.

Competitive pressures are forcing timely responses to com-
plex opportunities. Applications are incorporating transac-
tions where every millisecond is critical, internal complexity
exists and access is required to massive databases. Some
form of change is needed. But to understand how Adaptive
Transaction Management is applicable it is necessary to
recall the ‘traditional transaction’.

Traditional transactions
Traditionally, a transaction is a set of actions that access or
change a set of resources. The initial state of a resource set,
possibly characterized by transaction parameters, acted on
by a transaction is defined as being consistent, and so
either implicitly or explicitly defines and satisfies a set of
consistency conditions (also known as constraints or
integrity rules).

Once defined, the transaction creates a delimitible set of
changes from the initial state (including any parameter val-
ues). Each change to the resource set (short of the final
change) creates an intermediate state, often intended to be
inaccessible to other transactions. Eventually, the transac-
tion leaves the resource set in a final state. Barring errors,
this intended final state is deemed consistent.

Thus a transaction transforms a resource set from an initial
consistent state to a final (and usually different) consistent
state. A transaction model formalizes these ideas, ensuring
that transaction behavior under various conditions is pre-
dictable.

Transaction processing is subject to multiple difficulties. A
transaction may use resources inefficiently or may fail to
complete operations as designed. Errors may cause the
final state to be inconsistent. Transactions may execute too
slowly. In simple environments, such difficulties can be
handled manually. Automated or semi-automated
approaches (for example using a transaction manager) are
required in more sophisticated situations.

Transactions often execute under control of a transaction
manager that enforces the transaction model. A traditional
transaction manager ensures that the initial and final states
are consistent and that no harmful side effects occur in the

Beyond ACID: an adaptive approach to transaction management

15

event that concurrent transactions share resources. It typi-
cally enforces the isolation of a specific transaction using a
default concurrency control mechanism (for instance, pes-
simistic or optimistic). If an error occurs before the final
state is reached, the transaction manager handles recovery
or returns the system to its initial state.

This sort of transaction processing still underlies the most
automated of financial and commercial transactions.

An unspoken assumption in automated transaction pro-
cessing has been that errors are exceptional and the trans-
action processing cost is minimal. Programming effort,
both design and coding, implements transactions assuming
that it is permissible to simply start over and re-do the work
if anything goes wrong.

This is no longer valid for the majority of business transac-
tions, let alone reflecting the entirety of any business’ real
world experience. Most business efforts and expertise are
about avoiding exceptions, mistakes and imperfections or
correcting their effects. Unfortunately, application pro-
grammers often treat transaction error recovery as an after-
thought, or final ‘check-box’. A realistic systemic approach
is highly desirable .

Naïve integration of automated transaction processing sys-
tems — via, for example, transactional messaging — main-
tain that the resulting complex application will itself recover
from errors if the components do. Nothing could be further
from the truth.

As more and more business functions are integrated, auto-
mated error recovery and resource management become
increasingly important and complex. Errors propagate as
rapidly as correct results — and the unanticipated conse-
quence (of these accumulating) errors can be devastating.

Businesses naturally focus on automating business func-
tions deemed necessary to their core competencies and
processes whose completion is ‘mission critical’. This is a
one-way street. With each success in automating a particu-
lar business transaction, the value of connecting and inte-
grating additional disparate automated transactions
increases, creating ever more complex business transac-
tions. With each integrative step, the need for automated
transaction management and error recovery becomes ever
more important.

ACID burns
Traditional approaches to automating transaction manage-
ment emphasize the means to guarantee the fundamental

properties of a ‘formal’ (correctly designed) transaction.
These properties — Atomicity, Consistency, Isolation and
Durability — are usually referred to by their acronym, ACID.
Transactions, especially if complex, may share access to
resources only under circumstances that do not violate
these properties, although the degree to a transaction
manager enforce the isolation property is often at the dis-
cretion of the user.

The standard interpretation of the ACID properties leads to
specific behavior when one or more of the elements that
compose a transaction fail due to an unrecoverable error
(generally, one that cannot be transparently recovered). As
usually understood, the atomicity property demands that:

� either all of a transaction’s changes were success-
ful and the resources are left in the intended final
state

� or the initial state of the resources is restored (or
unaltered) as if the transaction had never begun.

Thus, the final state resulting from transaction execution is:

� either the initial state
� or a specific intended state.

An unrecoverable error always results in restoring the initial
state, typically through a ‘rollback’ process that effectively
preserves the initial state — at least until the transaction
succeeds or fails. An alternative is to restore the initial state
via an ‘undo’ or ‘inverse’ transformation — known as a
compensating transaction (about which more later). This
method presumes that, for every error, the most suitable
compensating transaction can successfully be identified
and implemented.

Enforcing atomicity as currently understood often wastes
viable work when the initial state is recovered. Additionally,
transactions dependent on a failed transaction cannot
begin until the failed transaction is resubmitted and finally
completes, thereby possibly resulting in excessive process-
ing times or even ultimately failing to achieve the intended
business purpose.

The consistency property guarantees the correctness (the
deterministic operation) of transactions by enforcing a set
of consistency conditions on the initial and final states of
every transaction. A consistent state satisfies a specific set
of consistency conditions, known in advance, and applied
to all transactions in a database or application. Thus a cor-
rectly written transaction, when applied to resources in an
initially consistent state according to known consistency
conditions, transforms those resources into a second (pos-

16

sibly identical) consistent state. The consistency of interme-
diate states, created as the component operations of a
transaction, are applied to resources and are uncontrolled
and unknown.

One problem with this approach is that consistency must
be either cumulative during the transaction, or else
enforced at transaction completion. Most transactions are
assumed to have been written correctly for the required
consistency conditions; transaction completion is simply
assumed to be sufficient to ensure a consistent state. This
leads to a further problem: interactions among transactions
constituting a complex business transaction may not result
in a consistent state unless the combined consistency con-
ditions are enforced automatically at completion of the col-
lection.

The isolation property demands that concurrent transac-
tions accessing the same resources behave as though each
is running in isolation (is independent). This is usually inter-
preted as meaning that side effects are avoided by prevent-
ing other transactions from seeing any intermediate states
and usually accomplished by ‘pessimistic concurrency con-
trol’ — locking any resource the transaction touches,
thereby ensuring that other transactions cannot modify
such resources nor access modified resources.

The most commonly used algorithm for ensuring this is
known as ‘two-phase locking’. While a transaction is pro-
cessing, locks on all resources it (that transaction) accesses
are acquired during phase one and are released only during
phase two — with no overlap in these phases. Obeying this
locking protocol algorithm enables interleaving of concur-
rent or dependent transactions while preserving the isola-
tion property, thereby implementing a form of dynamic
scheduling.

This interpretation of isolation necessarily increases the pro-
cessing time of concurrent transactions that need to share
resources, since a locked resource may not be modified by
any other transaction until the locking transaction com-
pletes. Another problem is that such isolation occasionally
creates a deadly embrace or deadlock condition among
two or more transactions. In the simplest case, each of two
transactions wait indefinitely for a resource locked by the
other. Usually, a deadlock is broken by aborting one or
both transactions, possibly at considerable cost.

Optimistic concurrency (time stamping) and lock or conflict
avoidance (nested transactions, multi-versioning, static
scheduling via transaction classes or conflict graphs) also
use this interpretation of isolation. Various caching
schemes, compatible with a concurrency control scheme,

improve concurrency by minimizing the time required to
access a resource. Yet existing approaches, and the associ-
ated techniques and implications for resource manage-
ment, fail to meet the needs imposed by today’s complex,
possibly distributed, business transactions.

The durability property guarantees that the final state of a
successfully completed transaction is impervious to system
failures, that it is ‘durable’. It is intended to guarantee that
a completed transaction’s specific result can be recovered
at a later time and so cannot be repudiated. Traditionally,
this is interpreted as meaning that the transaction’s final
state has, in effect, been recorded in non-volatile storage
before confirming the successful completion of the trans-
action. Usually, some combination of resource states is
recorded, along with the operations that have been applied
to the resources in question, by a log manager. The record-
ing process is usually known as ‘commit’ and the step in a
transaction at which a ‘commit’ is processed is known as
the commit point.

One way to make an intermediate state recoverable is to
request a ‘savepoint’. Savepoints are arbitrarily designated
so they need not represent a consistent state and are typi-
cally not durable. The system will create or return to a spe-
cific savepoint only at the explicit request of the user.
Savepoints cannot be asserted automatically by the system
except by the most rudimentary rule — for example after
every operation, periodically or based on resource usage.
None of these enable the system to determine to which
savepoint it should rollback after a particular error.

When transaction actions are executed (whether concur-
rently or sequentially) under multiple, independent
resource managers, the rollback and commit processes can
be co-ordinated so that the collection behaves like a single
transaction. In essence, the interdependent actions are
implemented as transactions in their own right, but are log-
ically coupled to maintain the ACID properties to the
desired degree for the collection overall. Such transactions
are called distributed transactions.

This co-ordination is normally achieved via some form of
two-phase commit, an inefficient process which tends to
reduce concurrency and/or performance. A system failure
during a two-phase commit can result in an incorrect state
that then requires difficult, costly and time-consuming
manual correction during which the system is likely to be
unavailable.

Compensating transactions can sometimes restore the ini-
tial state of a collection of logically coupled transactions
(known as a compensation sphere). In such cases, it may be

Beyond ACID: an adaptive approach to transaction management

17

necessary to run multiple compensating transactions suc-
cessfully in a specific order, thereby ‘unwinding’ the entire
collection.

Error handling is a significant aspect of transaction man-
agement. With current approaches, complex, distributed
business transactions are as likely to fail almost as often as
they succeed.

Transaction behavior is difficult for workers to understand
because it does not fit with peoples’ expectations of how
the real world handles problems (we rarely throw away our
work rather then think in terms of errors and their
attempted correction). Because they do not offer an oppor-
tunity to record both the error and the correction applied,
adaptive improvements are harder to derive. Much of the
value of the experience (how the mistake was made and
how it was corrected) is discarded after the correction is
completed. On top of all this, error recovery is relatively
inefficient.

Coupling inter-dependent transactions while ensuring tra-
ditional consistency and atomicity extracts an excessive
resource cost. It introduces difficult to manage failure
modes and a high cost of error recovery. Yet any attempt
to avoid the high overhead of distributed transactions may
introduce inconsistencies. The techniques may be compati-
ble only with flat transaction models. But these usually do
not provide the required business transactions — and busi-
ness processes cannot then be implemented.

Traditional
transactions are insufficient
As outlined above, the usual interpretation of the ACID
properties introduces a number of difficulties. Taken
together, these interpretations result in less than optimal
use of resources and inefficient error recovery mechanisms.
The traditional techniques for preserving the ACID proper-
ties — optimizing resource usage and recovering from
errors — cannot be applied effectively in many business
environments involving complex transactions, especially
those pertaining to global electronic commerce and busi-
ness process automation.

There are numerous optimizations and variations on the
traditional transaction model, including split transactions,
nested transactions, weakened isolation or consistency
requirements, etc. In practice, all these approaches have
one or more significant disadvantages.

The idiosyncrasies of the traditional transaction model
make the translation of a business transaction into a set of

computer transactions an error-prone art that few can
learn. Non-technical business workers are even less capable
of recognizing the business intent of computer transac-
tions, making the correct navigation of an application all
the more difficult.

Such problems have a negative impact on businesses. The
efficiency, correctness and auditability of automated busi-
ness transactions has a tremendous influence on a busi-
ness’s profitability. As transaction complexity increases, the
impact of inefficiencies and errors increases combinatori-
ally. Businesses work in a complex, imperfect world, and
attempt to impose their own order on events. Constantly in
flux, they persist in imposing ‘acceptable’ states through
the efforts of all their employees, from the CFO reviewing
yearly, quarterly, daily or even ‘real-time’ performance
reports, to the zealous (or indifferent) stock clerk managing
physical inventory.

Introducing a new transaction model
Over the years, many transaction models have been cre-
ated to address particular transaction characteristics. For
example, the saga model was designed to address long-
running transactions.

These models typically had an associated cost (such as
weakening one or more of the ACID properties or permit-
ting incorrectness under certain conditions) or are applica-
ble only to transactions possessing certain characteristics.
Other transaction models redefine, for example, transac-
tion scope, commit points, nesting behavior — and other
aspects.

The Adaptive Transaction Model1 begins with a classifica-
tion of transactions. Like the traditional transaction model,
transactions are defined in terms of their adherence to
ACID properties. However, the Adaptive Transaction Model
reinterprets each of the ACID properties, extending them in
a natural way while removing certain restrictions imposed
by the traditional interpretations. On the other hand, these
interpretations reduce to the traditional interpretations
under appropriate circumstances. In addition to the usual
ACID properties, the Adaptive Transaction Model adds an
auditable property, resulting in what can be called call the
A2CID properties.

Transactions can be classified broadly into three types, with
corresponding qualifiers or adjectives:

� physical
� logical
� business.

18

A physical transaction is a unit of recovery; that is, a group
of related operations operating on a set of resources that
can be recovered to an initial state as a unit. The beginning
(and end) of a physical transaction is thus a point of recov-
ery. A physical transaction should have the atomicity and
durability properties.

A logical transaction is a unit of consistency; it is a group of
related operations working on a set of resources that
together meet a set of consistency conditions and consist-
ing of one or more co-ordinated physical transactions. The
beginning (and end) of a logical transaction is a point of
consistency. In principle, logical transactions should have all
the ACID properties.

A business transaction is defined as a unit of audit; it is a
group of related operations working on a set of resources
that together result in an auditable change comprising
identifiable, co-ordinated transactions. If each of these
component transactions are logical transactions, business
transactions combine to form a predictable, well-behaved
system. The beginning and the end of a business transac-
tion are thus audit points — which means that an auditor
can verify the transaction’s identity and execution. Audit
information obtained might include identifying the opera-
tions performed, in what order (to the degree it matters),
by whom, when, with what resources, that precisely
describe possible decision alternatives were taken in com-
pliance with which rules, and that the audit system was not
circumvented.

Business transactions can comprise other business transac-
tions. They can:

� last as short as microseconds
� span decades (covering, for example, life insur-

ance premium payments and eventual disburse-
ment which must meet the consistency and audit
conditions imposed by law and policy).

There are many reasons to group a set of operations on a
set of resources together (for example, to define a unit of
work). It is common to refer to any such group informally
as a transaction — even though the group does not satisfy
any particular requirements.

For the purposes of this analysis and in keeping with this
practice, the term:

� transaction is used without a qualifying adjective
or other modifier when referring to a unit of
work of any kind — whether having formal prop-
erties or not

� pseudo-transaction is used to refer to a unit of
work that does not preserve all the ACID proper-
ties (or our specification and extension of them)
required by its classification (it may preserve
some).

Pseudo-transactions exist for many reasons including:

� the difficulty of proper transaction design and
enforcement

� incomplete knowledge of consistency rules
� attempts to increase concurrency via decreased

isolation
� attempts to increase performance at the expense

of atomicity
� and so on.

Orthogonal to the foregoing classification, a transaction
may have certain other characteristics. It may be implicit or
explicit according to whether its boundaries are implicitly or
are explicitly declared or identified. A group of transactions
will be said to be ‘co-operating transactions’ if they share at
least one intermediate state or coordinated action.

ACID with less burn = A2CID
Within the Adaptive Transaction Model, the atomicity
property is refined to mean that either all effects specific to
a transactions will complete or they will all fail. Notice that
it does not require the transaction itself to succeed or fail,
only its effects. In ATM we no longer require the transac-
tion to be effectively predefined with respect to either
recovery on failure or the final state to which it transitions
on success.

Loosely stated the Adaptive Transaction Model permits
transaction to be recovered to any state that does not inval-
idate work already done or to transition to a final state that
satisfies an identified and recorded set of consistency con-
ditions, possibly different from those satisfied by the initial
state. These requirements provide atomicity with the viabil-
ity of traditional atomicity, but with more flexibility.

The consistency property is refined to mean that whenever
a state satisfying a first identifiable set of consistency condi-
tions in a category is connected by a set of operations to
another state satisfying a second identifiable set of consis-
tency conditions in a category, those operations constitute
a (possibly implicit) transaction. An identifiable set of con-
sistency conditions requires a computational decision pro-
cedure for determining whether or not a state satisfies the
consistency conditions. The consistency conditions partially
characterize the state.

Beyond ACID: an adaptive approach to transaction management

19

The usual interpretation recognizes consistent states only at
transaction boundaries as it assumes consistency conditions
are fixed and known in advance. Instead, Adaptive Transac-
tion Model permits multiple intermediate and boundary
consistency states with each possibly defined by multiple
sets of consistency conditions in a category.

This introduces two new concepts:

� categories of consistency condition sets
� consistency points.

Through the course of a transaction, the set of resources
may enter a consistent state from time to time; this is
referred to as a consistency point. Such a consistent state
may be detected automatically, or may be manually
asserted by the user (for example, via program code, direc-
tives or interactive commands). Consistency points may be
durable or non-durable, as required by the circumstances
under which they may be used. In effect, a consistency
point is a savepoint with the added requirement of consis-
tency and the optional property of durability. (Note that a
transition from one consistency point to another consti-
tutes an implicit transaction.)

The isolation property is refined to mean that no two trans-
actions produce a conflicting or contradictory effect on any
resource on which they are mutually and concurrently (that
is, during the time they are processed) dependent. This
makes explicit the intuitive notion that isolation is relative
to consistency — that it is not required as long as consis-
tency is not at risk. Sharing of intermediate states and
resources is only conditionally precluded; thus transactions
can be co-operating. Somewhat more formally, the isola-
tion property holds if the state resulting from any group of
concurrent, interleaved, co-operating transactions is consis-
tent with a possible history comprised of a serialization of
the implicit and explicit transactions in the group.

The durability property is refined to mean that the final
state of a transaction must be recoverable insofar as that
state has any effect on the consistency of the history of
transactions as of the time of recovery. Thus, if the recov-
ered state differs from the final state in any way, the dura-
bility property is a guarantee that all those differences are
consistent with all other recovered states and external
effects of the transaction history. Unlike traditional durabil-
ity, the final state of a transaction’s resources need not be
recorded in non-volatile storage but may be computed.
Furthermore, until there is a dependency on it, the final
state may be considered one of a class of possible states.

A new property, the auditablity property, applies specifi-

cally to business transactions as discussed above. A busi-
ness transaction is auditable if it is uniquely identifiable and
its set of audit characteristics — initial state, final state and
some partial ordering of the set of operations consistent
with both the system transaction history and the initial and
final states — are each well-defined and identifiable. In
general, a business transaction will have an associated set
of auditability constraints, such as who authorized or per-
formed which operation using which resource.

The foregoing interpretations enable a logical transaction
to be understood as a transition from one state in a class of
consistent states to a state in another class of consistent
states. Each consistent state in a class is defined by a set of
consistency conditions, so that two states in the class may
satisfy different sets of consistency conditions. Logical
transactions thus provide no inherent guarantee as to
which consistent state in the class of achievable states will
result, unless the consistency conditions restrict the class to
one consistent state given the selected initial state.

These refinements to the ACID properties and logical trans-
actions permit a more realistic implementation of business
transaction processing. Under familiar restrictions, the new
ACID definitions reduce to the old definitions compatible
with existing transaction managers. Both traditional trans-
action processing methods and altogether new methods
are permitted.

The new methods make it possible to manage complex
transactional environments, while optimizing the resource
usage. They extend to distributed transactions, and to busi-
ness transactions which span both multiple individual
transactions (for example, in a business process) and multi-
ple business entities (as is required in electronic commerce
and business-to-business exchanges).

Methods and applications
The Adaptive Transaction Model enables numerous trans-
action processing methods and optimizations. Three
important examples will be discussed here including:

� establishing consistency points which minimize
the cost of recovery under certain types of error

� transaction relaying which permits work sharing
across otherwise isolated transactions, while
simultaneously minimizing the impact of failures

� corrective transactions which permit error recov-
ery without unnecessarily undoing work, without
so-called compensating transactions while
enabling the tracking/correlation of errors and
correction.

20

By contrast with prior approaches, these methods are
extensible to complex transactions and distributed business
environments. They are also particularly well-suited to busi-
ness transactions and business process management. Each
is applicable to pseudo, physical, logical, business and dis-
tributed transactions — all with predictable consequences.

Consider consistency points. Whereas a commit point tra-
ditionally requires a fixed set of consistency conditions, a
consistency point is associated with a set of identified con-
sistency conditions which it satisfies. These consistency
conditions determine how the consistency point may be
used. (Note, however, that this interpretation of the consis-
tency property permits considerable flexibility in defining
consistency points.)

Various applications of consistency points are almost
immediately apparent, most of which do not require that
flexibility, including:

� automatic deadlock recovery: rather than being
aborted, a deadlock victim can rollback to the
nearest consistency point; alternatively, on
encountering a deadlock, a transaction can auto-
matically rollback to a consistency point and retry
in an internal loop, which is often sufficient to
break the deadlock

� automated savepoints: consistency points can be
detected automatically and asserted by the sys-
tem as savepoints

� categories of consistency points: multiple sets of
consistency conditions can be defined so that
multiple categories of intermediate states can be
automatically detected

� categorized rollback: by associating a class of
error with a set of consistency conditions that
define a consistency point, transaction rollback
on detection of an error to an appropriate consis-
tency point can automatically initiated

� optimized commit processing: durable consis-
tency points can be used to distribute commit
processing automatically throughout a long run-
ning or complex transaction rather than at the
commit point

� power failure recovery: after a power failure,
transaction recovery can proceed from the near-
est durable consistency point.

Transaction relaying is a method of sharing intermediate
states among a group of transactions. The principle caveat
is that the intermediate state must occur at a consistency
point of the originating transaction and the associated con-
sistency conditions should be compatible with the receiving

transaction. A protocol for recovery determines which
transaction controls each resource depending on the com-
mit state of transactions in the group.

Under many circumstances, transaction relaying may be
used in place of distributed transactions, chained transac-
tions or other methods of coupling a group of inter-depen-
dent transactions. The transaction relaying provides a
means for efficient, consistent management of inter-
dependent transactions without violating atomicity or isola-
tion requirements, without introducing artificial transaction
contexts while enabling resource sharing and recovery.

Suppose that a particular business process consists of trans-
actions A and B and that there is an integrity rule or con-
straint or a dependency that requires transaction B to
follow A — because it relies upon the work done by A. In
other words, some portion of the final state of resources
affected by A (the output of A) is used as the initial state of
resources required by B (the input of B). The final state of A
is a consistency point, even before A commits.

The usual approaches demand that one:

� either accept the possibility that the final state of
A is altered by some transaction C before B can
access and lock the required resources (the
sequential transaction scenario)

� or accept the possibility that the state of
resources needed by B is different than the state
of those same resources as perceived by some
other transaction (chained transactions)

� or run transactions A and B combined in a dis-
tributed transaction, accepting the fact that all
resources touched by either A or B will be locked
until B completes (the distributed transaction sce-
nario).

Transaction relaying recognizes the fact that A and B may
share the state of the resources that B requires at least as
soon as A enters the final consistency point for those stated
resources and has made that final state durable (assuming
durability is required). Unlike chained transactions, it need
not wait until A is ready to commit. It need not even wait
until locks are released. Rather, the Adaptive Transaction
Manager either transfers ownership of those locks directly
to B or establishes shared ownership with B (as long as only
one transaction has ownership of exclusive locks on a
resource at any given time if the ACID properties are
desired) — and never releases them for possible acquisition
by C.

Unlike the sequential transaction scenario, there is no pos-

Beyond ACID: an adaptive approach to transaction management

21

sibility that C will interfere in the execution of B. Unlike the
chained transaction scenario, transaction relaying does not
require transaction A to have committed, the beginning of
transaction B to occur immediately after the commit of
transaction A, the commit of A and start of B to be atomi-
cally combined in a special operation (indeed, B may
already have performed work on other resources), transac-
tions A and B to be strictly sequential or transaction B to be
the only transaction that subsumes shared responsibility for
resources previously operated on by transaction A. Unlike
the distributed transaction scenario, resources held by A
(but upon which the initial state of B does not depend) are
released as soon as A completes: there is no two-phase
commit overhead. Unlike split transactions, transaction
relaying does not introduce artificial transaction contexts,
can be fully automated without sacrificing consistency, and
yet enables collaborative transaction processing in which
work groups can communicate about the status and inter-
mediate results of their work (including negative results).

Transactions A and B can do additional work on other
resources, prior to and after the consistency point, respec-
tively. Transaction A can also do work on the shared
resources after the consistency point discussed above, so
long as transaction A alters no consistent state on which
transaction B depends. Other transactions can have a simi-
lar relationship to transaction A, involving possibly different
resources or consistency points.

The new ACID properties are preserved if exactly one trans-
action has responsibility for shared resource modification at
any particular time, and that transaction can rollback the
state of those resources to the most recent consistency
point in which they are involved. (Note that consistency
point durability might not be a recovery requirement — as,
for example, during deadlock recovery.)

Transaction relaying lets transactions ‘publish’ their states
and/or consistency conditions at consistency points and
permits other transactions to ‘subscribe’ to the state of
associated resources. Numerous methods may be used to
determine which of the subscribing transactions will gain
write permission over the associated resources and in what
order.

Corrective transactions provide an alternative to both com-
pensation and rollback when the desired result of a trans-
action can be understood as producing a state meeting a
particular set of consistency conditions (for example, main-
taining a balance of debits and credits across a set of bank
accounts). Unlike compensating transactions that address
only error repair, corrective transactions effectively enfold
both error repair and correction.

When an unrecoverable error occurs, the failed transaction
is returned to a recoverable consistency point. The error is
classified and the corresponding consistency conditions on
the affected resources. A corrective transaction is then
invoked to transform the affected resources from the most
recent consistency point to a state (possibly approximating
the intended state) that satisfies an alternative set of con-
sistency conditions (the ‘acceptable conditions’). The choice
of acceptable conditions constrains the final state to some
acceptable state: they may be completely distinct from the
initial set or just more general category. Many methods
may be used to ‘discover’ an appropriate corrective trans-
action. If no such corrective transaction exists, the failed
transaction is returned to an even earlier consistency point,
and an appropriate corrective transaction invoked. The
process is repeated until the acceptable condition(s) in the
category are satisfied.

For example, consider a simple business process consisting
of two predefined but parameterized transactions, a funds-
transfer transaction (parameterized for transfer amount
and two account numbers) and a loan transaction (parame-
terized for loan amount but with fixed account number). If
an attempt to transfer a specified amount between two
accounts fails because of insufficient funds, an automatic
corrective transaction might loan the user the required
funds, thereby expanding the consistency conditions to
include an account not owned by the user.

In this example, the corrective transaction might be manu-
ally predefined by the bank and caused to run as part of an
error handling routine. Similarly, rather than debiting the
explicitly specified account (for example, checking), it might
debit an alternate account (for example, savings or an
investment account). Because alternative sets of consis-
tency conditions can be added or removed, the method is
more modular and adaptive than trying to anticipate and
code alternatives within the transaction.

Corrective transactions replace the rigidity of fixed consis-
tency conditions with a category of sets and invoke an aux-
iliary set of actions (the corrective transaction) that will
transform the current state into one satisfying some set of
consistency conditions in that category. Options for achiev-
ing a final consistent state are thus broadened. For each set
of consistency conditions defining a transaction’s final
state, the other sets of consistency conditions in its cate-
gory constitute acceptable consistency conditions.

This concept mimics the real world of business, in which
errors are common and a strictly pre-determined result of
work is not possible. Rather, business workers must achieve
an acceptable result, where acceptability is determined by

22

alternative sets of constraining conditions and often associ-
ated with business risk and opportunity assessment.

The method of corrective transactions requires that each
transaction be identified by the consistency conditions that
will be enforced or that such consistency conditions be
automatically discoverable by the system. Such consistency
conditions might, for example, be stored in a repository
accessible to the transaction manager, other appropriate
software or even a user.

Management conclusion
Research on implications of the Adaptive Transaction
Model is on-going. In addition to the applications discussed
here by Mr. McGoveran, it fosters new methods for
advanced concurrency control, resource management and
scheduling.

On the less technical side, its appropriateness for many
business application has been described. These include
asset exchanges where the parties do not have an initial
agreement as to the value of the particular elements, or
even agreement as to the particular elements that are the
subject of the proposed exchange, beforehand, to allow

intermediate positions to be evaluated and the costs and
benefits of concessions and tradeoffs explicitly to be
assessed.

Certain types of business can be expected to benefit from
the Adaptive Transaction Model. These include:

� telecommunications rerouting
� inventory management for retail or distribu-

tional operations (that frequently encounter
spillage, wastage or theft)

� electronic funds transfer message repair
� financial transactions affected by govern-

mental fiats
� billing systems reflecting or affected by

collection processes, debtor failures and
even bankruptcies.

1 The phrase ‘adaptive transaction model’ has appeared in
the transaction research literature in conjunction with a dif-
ferent model than the one described here. As the usage in
this analysis was both independent and contemporaneous
with that literature, the author has chosen to retain its use
and name in the hope that the vast differences will be
readily apparent to the informed.

Beyond ACID: an adaptive approach to transaction management

23

Model-driven

application development

Peter Bye, Consultant and
Alan Hood, Unisys Systems and Technology

Management introduction
Much effort has been expended over the life of the IT industry in trying to accelerate
and otherwise improve the process of new application development. Language and
runtime environments of increasing sophistication have been produced, of which Java
EE and the .NET framework are currently the most popular. Many tools are available to
help developers use these environments effectively.

However, both Java EE and .NET runtime environments are complicated, and Java and
C# are essentially third-generation languages. These factors can lead to a concern with
technology in the form of programming language and runtime environment — rather
than focusing on the real purpose of application development: converting user require-
ments into working code and databases.

In this analysis Peter Bye and Alan Hood describe why they believe that model-driven
development is a much better approach. They argue that this universal approach is
used in other branches of engineering. No one would build a bridge or an aircraft,
never mind a nuclear power station, without extensive qualitative and quantitative
modeling before production, involving collaboration with all the stakeholders. They
suggest the same should be true for software development.

24

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2007 Spectrum Reports Limited

The rational for formal models
Informal and formal models have long been part of soft-
ware development. In the context of this analysis, however,
we are concerned with a specific approach. Tools should
work at a high level, above programming languages and
application execution environments. Plus — the key point
— having modeled an application, all the necessary code
— together with database schemas and a runtime environ-
ment and including middleware — should be generated
automatically. Furthermore, the target runtime environ-
ment should be selectable at generation time allowing, for
example, applications to be generated from the same
model for Java EE, .NET as well as other environments, dif-
ferent databases and multiple operating systems.

The idea of generating systems directly from models, with-
out programming (in the sense of using a programming
language such as Java or C#), is not new. Today there are
successful implementations, which achieve most or all of
these goals. What is surprising is that they are not more
widely used.

It is worthwhile, therefore:

� looking at the kind of application develop-
ments typically required today

� discussing the development processes
(including modelling)

� describing an example of a model-driven
development product.

What will remain puzzling is why there is a continuing use
of essentially third-generation approaches. Possible expla-
nations will be assessed.

New development requirements
In order to respond rapidly to changing business require-
ments, organizations are under pressure to deploy new IT
application services in ever decreasing timescales. Recent
years have seen an emphasis on re-using existing applica-
tions as components in distributed environments, most
notably within the framework of a Service Oriented Archi-
tecture (SOA). There is a growing body of evidence that this
approach — when compared with developing all functions
from scratch — reduces the time to deliver and reduces
the risk involved (in many cases),.

Users can be offered new services which are produced by
the orchestration of services exposed by existing applica-
tions. Products such as Enterprise Application Integrators
(EAI) and Enterprise Service Buses (ESBs) provide a variety of
tools for generating the rules of orchestration — the

sequences of and conditions for service invocation — and
the interfaces used to access the exposed services.

However, although EAI and ESB products offer increasingly
sophisticated orchestration tools, there is a limit to what
can be done by orchestration alone. Substantial new appli-
cations have to be developed, possibly acting as compo-
nents in a service architecture as well as offering external
services directly.

As a rather simple example, consider a (fictional) bank,
which offers a range of products. In this example, there are
three existing applications managing financial service prod-
ucts, each running on a different platform:

� current (checking) and savings accounts
� mortgages
� insurance.

Each system is accessible from teller workstations and from
a variety of internal users, for example in call centers. Asso-
ciated with the record of each product in the databases is
information about the customer — name, address, tele-
phone number and so on.

The bank also offers its customers direct Internet access to
each product application, providing information such as
account balances and statements. The product manage-
ment applications have been wrapped, or adapted as
required, to allow a self-service Internet application to
access services.

The bank then decides to extend the range of services to it
wishes to offer. These will include:

� enquiries about the status of all products
held, without the customer having to access
each system in turn

� movements of funds between products, for
example from a savings account to pay off
part or all of a mortgage.

The implementation of these new services cannot be done
by simply adding new orchestration rules. A new customer
relationship management (CRM) application is required.
The database of the CRM system will contain:

� the information about the customer, consoli-
dated in one place instead of in each prod-
uct system,

� details of the various products held by the
customer and any rules or conditions applic-
able.

Model-driven application development

25

The CRM application will function as a service provider in
the new Internet services. It will also be accessible from
workstations within the bank, for example in call centers
and branches, to provide information to bank staff about
customers when talking to them on the telephone or face
to face. Figure 4.1 shows a schematic of the environment
following the introduction of such a new CRM system and
the expanded Internet application.

The bank’s customers can now be offered new services
such as ‘get all product status’ and ‘move X amount from
savings account to mortgage’.

The CRM application and the three product management
systems are service providers to the Internet application,
exposing the required services such as:

� ‘validate customer’ and ‘get customer’s
product details’ from the CRM

� ‘get account balance’ information from the
product management systems

� find ‘debit account’ and ‘credit account’
from product management systems.

So, for example, if the customer requests the status of all
products, the Internet application obtains a list of the prod-
ucts held from the CRM service, and the status information
from each product management system as required. The
retrieved information is consolidated and returned to the

customer. Such a CRM application is typical of the kind of
development required. It is a substantial application, requir-
ing a new database. It also has to function in two environ-
ments:

� as a component in a service architecture,
where its services are invoked from the
Internet application to retrieve details of
products held by customers

� by providing a direct user interface (GUI) for
access by users — such as call center opera-
tors or staff in branches — to obtain infor-
mation about customers and products.

How such applications could be developed is the subject of
the remainder of this analysis.

The development process
and application modeling
The application development process includes all activities
from the gathering and formalization of requirements to
the generation of the new runtime system. IT developers
work in collaboration with business management, users
and other stakeholders during the specification, design,
implementation and generation phases of the system. The
development process should also include activities follow-
ing initial deployment such as upgrades and enhancements
to add new functions or fix problems (Figure 4.2).

Figure 4.1: Bank environment including the new CRM application

26

As can be seen in Figure 4.2, the result of the development
may include the generation of databases and client logic,
as well as the application logic in the center, which will
need to be deployed into a software environment compris-
ing operating systems, database management systems and
middleware. This will depend on the specific requirements;
it is true for the CRM application discussed in the previous
section, for example.

A great deal of effort has been expended on development
methodologies and tools since the early days of computing.
This is unsurprising in view of the poor performance of the
industry in delivering new systems on time, within budget
and with all the required capability. A particular difficulty
has been to make the development process seamless —
from specification of requirements to creation of the run-
ning system. Without this level of integration, dislocations
between the various different phases of the process can
result in the loss of information and thereafter lead to
problems.

The transitions from specification to design and design to
implementation have proved notably difficult. It is impor-
tant, therefore, that methodologies and tools work with
concepts that are understandable by users and other stake-
holders. They must be implementable within the software
infrastructure, suited to the class of problem being
addressed and able to work seamlessly from specification
to runtime system (Figure 4.3).

Model-driven development
Model-driven development offers such an approach. Mod-
els, in the sense of abstract representations of physical or
logical entities, have extensively been used in a variety of
fields. Examples include designs for buildings and machines
(such as aircraft or motor vehicles). Similarly, mathematical
models have a long history of use in science and engineer-
ing — representing physical systems, either natural or man-
made. Small scale models — maquettes — are used to
explore the properties of larger entities without the
expense of a full implementation — such as when a model
of an aircraft is used for testing in a wind tunnel.

The advantage of models is that they can be constructed
and discussed with the intended users or consumers, and
can be modified as required — all at a much lower cost and
in a shorter timescale than working with a full implementa-
tion. When everyone is happy with the model, the full
implementation goes ahead.

Although model-driven approaches are currently a subject
of much discussion in the IT world, models have always
been used in system development, just as they have in any
other branch of engineering. Graphical representations
may be informal (for example, diagrams drawn during
brainstorming on a whiteboard or on the back of an enve-
lope in bar) or more formal. (Flowcharts have been used
since the beginning of the IT industry; the various symbols
— decision boxes, stored data, processes and so on —

Figure 4.2: Schematic of the development process

Model-driven application development

27

were standardized at an early stage.)

More recent developments include the widespread use of
UML (Unified Modeling Language), which is itself a tool for
producing design artifacts based on standardized represen-
tations. Other techniques are also used, for example math-
ematical models based on queuing theory or simulation
(for performance modelling). Indeed, prototype implemen-
tations are the equivalent of maquettes in other branches
of engineering and proponents of agile development
regard prototypes as the best model, with iterations being
produced as required to arrive at the desired target system.

A central concern of model-driven development — almost
the Holy Grail for IT — is the generation of the resulting
runtime system directly from the model. For this to happen,
the model must be at a high enough level to be understood
by the users and other stakeholders requiring the system —
and sufficiently precise to generate the runtime system
(thereby avoiding the dislocations caused by transition
between different phases of the implementation). In this
view, the model is the system. It is transformable by gener-
ation processes into executable versions.

Achieving this?
This section discusses the Unisys Agile Business Suite is an
example of a product that enables the development of

applications — as well as generating the CRM system in the
bank’s example above — and the subsequent runtime sys-
tem from the high-level model.

Unisys Agile Business Suite (AB Suite) has its origins in ear-
lier Unisys products from Unisys, such as LINC (first intro-
duced in the mid-1980s) and Enterprise Application
Environment (EAE), which was first released in 2000. Each
has built on the experience of the earlier products and kept
in step with general industry developments.

The goals of AB Suite are to:

� provide a means of rapid application devel-
opment based on a model-driven approach
which focuses on the business requirements

� enable the automatic generation of runtime
systems from the model — without the need
for intermediate design and coding steps

� generate all parts of the application, includ-
ing database and user interfaces

� enable users to have a choice of runtime
environment (including widely accepted
industry standards) and avoiding being tied
to any specific operating system, application
execution environment, database manage-
ment system or middleware

Figure 4.3: Development methodology and tools

28

� support the generation of different runtime
systems from the same model, without
requiring it to be changed — and to allow
different parts of the application to be
deployed in different runtime environments

� optimize the generated environment to sup-
port high volume transaction processing as
well as other application environments; this
includes the choice of database on various
platforms

� produce applications able to act as compo-
nents within an SOA framework; these must
be able to include other components, gener-
ated with different tools, within a model.

These goals were also to a large extent those that drove
LINC and EAE. Both can generate for Windows, selected
variants of UNIX and Linux, as well as for Unisys ClearPath
mainframes. For LINC and EAE, the generation process pro-
duces COBOL as an intermediate language, which is then
compiled for the target environment.

There have also been significant shifts within AB Suite to
take advantage of more recent developments. In particular,
AB Suite runtime system generation support now includes
Windows .NET and Java EE application servers — generat-
ing C# and Java as intermediate languages respectively.
This is in addition to generating for Unisys ClearPath MCP
systems, where COBOL is used as the intermediate

language. (Figure 4.4 shows the major elements of AB
Suite.) As can be seen, AB Suite comprises two
major elements, the Agile Business Suite Developer and
the Agile Business Suite Runtime.

AB Suite Developer is used to define and generate applica-
tions. It includes the System Modeler, Builder, Version Con-
trol and more and is installed on a Windows workstation
operating within Microsoft Visual Studio. AB Suite Run-
time, which is the runtime system, differs for the various
supported runtime environments.

The System Modeler in AB Suite Developer provides a
model-based, object oriented development environment.
System Modeler also functions as a package within Visual
Studio. It is used to define a separate project type, in the
same way that various project types can be developed
using tools, such as Visual Basic or C#.

Developers using System Modeler define programming
objects using a set of pre-defined, stereotyped classes. A
stereotype is a pattern, based on established business func-
tionality which has common properties and built-in behav-
ior; using stereotypes can greatly reduce the effort required
to produce systems. System Modeler supports the creation
of application logic using a high-level scripting language
called LDL+ as well as deriving the database structures from
its high-level application model. Each class may include pre-
sentation, which is defined within AB Suite as a GUI. The

Figure 4.4: Agile Business Suite elements

Model-driven application development

29

interfaces can be deployed in a variety of environments,
including workstation clients, such as Windows forms,
Web interfaces (such as ASP.NET) and programmatic inter-
faces for custom clients (including Web Services).

Service-oriented environments may contain services gener-
ated in a variety of ways. Existing pre-SOA environments
have to be accommodated; that is a major purpose of SOA.
These may be industry-standard component services imple-
mented using other technologies, as well as existing appli-
cations and data in so-called legacy systems. Additional
services can be included in SOA environments with new
components built with AB Suite. System Modeler enables
users to define the interfaces to external components, Java
and others, and then use those external objects as part of
the full solution model. For example, even though a Java
component that has been developed by a third party can-
not be modified, its signature can easily be included in the
model. The developer is aware of the need to call it from
within the AB Suite model, and he/ she can view details of
the interface — like its name, input and output parameters.

In the context of a bank, for example, an external class that
implements some third party service such as international
currency exchange rates can be treated within the model
just like the internal class that is used to model a savings
account. Calling a method (GetExchangeRate) on the cur-
rency external exchange class looks just like calling a
method (GetAccountBalance) on the internal savings
account class. The difference is that the details of how the
savings account is implemented can be viewed and poten-
tially changed, whereas the details of the external service
may not be accessed at all from within AB Suite.

Generation and deployment
Sadly, most developers are not concerned with runtime
environment details. They do not manipulate the C#, Java
or COBOL generated by AB Suite but work at the level of
the model from which the runtime system is generated.
Generation is performed by the AB Suite Builder compo-
nent in AB Suite Developer. It generates all the application
logic in the form required by the runtime environment:

� the .NET Framework (C#)
� a Java EE application server (Java)
� Unisys ClearPath MCP (COBOL)
� as well as the user interfaces defined by the

developers in System Modeller.

Different runtime environments may be generated from
the same model. The ability to generate for different plat-
forms brings a several advantages:

� those producing applications for multiple
deployments (for example package vendors)
are able to generate systems suited to client
requirements from just one source model;
this helps where organizations have policies
for specific technologies which dictate the
deployment platform — a policy in favor of
Linux, for example, will remove the option
for .NET

� applications can be generated for different
platforms depending on the amount of traf-
fic expected

� test and QA environments can be generated
for smaller platforms than the production
runtime system.

Databases are automatically derived from the models,
specifically tailored to the platform in which the resulting
system is to run. A generation for a .NET environment gen-
erates tables for Microsoft SQL Server or Oracle database
managers. AB Suite determines what tables are required
from the model, defines the primary and secondary indices
and generates SQL procedures required to perform poten-
tially complex queries that are needed by the application.

Developers do not need, therefore, to define tables explic-
itly or write any SQL. If components of the same application
are generated to run on a different platform, for example a
Unisys ClearPath MCP system, AB Suite will use the native
database management system of that platform — creating
the required structures and access methods.

AB Suite runtime includes services and libraries that enable
AB Suite applications to communicate with other compo-
nents, using both proprietary and standard methods and
protocols. Where appropriate, AB Suite integrates with the
database management system and transaction manage-
ment of the deployment environment, for example with a
Java EE application server. If the platform does not provide
such native management facilities, the AB Suite Runtime
environment delivers them.

The ability to generate the entire runtime system brings
additional benefits in application maintenance and exten-
sion. Many tools have been developed to speed up the ini-
tial development and deployment of applications, or
application components.

However, unless there is an obvious bi-directional link
between the objects in the model and the program units,
database structures and user interface components that
implement the object, even minor changes can be tedious
and error prone. Generating 100% of the application and

30

database automatically from the model means that
changes to requirements do not require the development
staff to locate and modify every database table, user pre-
sentation and transaction program that might be impacted
by the change. They simply change the model and rebuild
the application.

Why has the model-
driven approach not been adopted?
We chose AB Suite as an example of what can be done
with model-driven development because we are familiar
with it and because it exhibits the characteristics required
for this approach. Experience has shown that applications
developed using AB Suite — or its predecessors, LINC and
EAE — can be completed quickly and reliably, and perform
well in the deployment environments.

We have shown that model-driven development is a viable
alternative to more traditional, 3GL-oriented methodolo-
gies. Key benefits include improved communications
between the users and stake holders, and the IT personnel
who produce and maintain the applications. Developer
productivity is improved, resulting in a greater responsive-
ness to changing user requirements. Although the experi-
ence with LINC stretches back more than 20 years, the
ideas of model-driven development — generating applica-
tions from a high-level business-oriented description of the
problem — go back further. For example, Teichrow and
others in the 1970s worked on defining PSL/PSA (Problem
Statement Language/Problem Statement Analyzer) —
which was aimed at producing systems from a high-level
definition. Apart from LINC and its successors, other prod-
ucts have appeared generating part, or in some circum-
stances, all of the runtime system.

Why, then, has what is essentially a 3GL approach persisted
for so much application development? Generating from a
model should result in a reduced development time, as well
as the ability to deploy in different runtime environments.
We suggest three possible, linked explanations.

The first is that people are unaware that model-driven
products are available; there are still only a few, with vary-
ing capabilities. In essence people have trouble believing
the claims made about speed of development, and the
ease and value of automatic generation of runtimes.

The second is inertia or technical conservatism; developers
establish a development environment with which they feel

happy and they may not wish to leave their comfort zone.
It does not take the possibility of the radical step of intro-
ducing model-driven development to send some traditional
developers hurrying to the barricades. The persistence in
the use of ancient text editors for manipulating source
code illustrates the reluctance to change. Some of the tech-
nical conservatism may also stem from not believing the
claims of the tool suppliers. Some will claim to generate the
entire application when in fact the result may be rather
less. And there may be a concern over the quality of the
generated code. One of the reasons for the downfall of
many of the 4GL CASE tools from the 1990s was that the
generated code was too generic or verbose and did not
perform well. Although technology has greatly improved
since then, it is still essential to pick a tool suited to the
business and application requirements.

The third possibility is more psychological, and has to do
with the value and status developers feel about themselves
as well as a deep fascination with technology. Environ-
ments such as Java EE are complex. Many IT people enjoy
learning and understanding the complexity — and feel that
they have a value to their employers by having this knowl-
edge. This feeling of a sense of value — of being indispens-
able — is particularly marked in an age when many people
feel insecure about their jobs, as is the case today with the
ever-present threat of off-shoring. Application develop-
ment has often been seen as a lower form of activity than
writing basic software. The ability to raise its status by per-
sisting with complex environments needing a lot of under-
standing is, therefore, all too tempting to application
development practitioners.

Management conclusion
Runtime environments are complicated, and Java and C#
are essentially third-generation languages. As Mr. Bye and
Mr. Hood have described, model-driven development is a
sounder approach for building applications than traditional
methods. Using what other branches of engineering have
practised and proved for years would seem to make sense,
at least from an organizational perspective — especially
when the whole (including the middleware components)
are produced.

But, as they also describe, people are almost certainly the
problem. Whether inertia or reluctance or disbelief is the
more accurate (or a self-reinforcing combination of these),
the result is that model-driven is not being adopted on the
scale that it should be.

Model-driven application development

31

IDEs for middleware

— a beginner’s guide

Trevor Eddols
Managing Director
iTech-Ed

Management introduction
Middleware might be thought of simply as software that goes in between two or more
applications so they are able to exchange data in a controlled way. This communication
between the applications could take place on the same hardware or could occur across
a network. What’s needed is an easier way of developing the software — an enabling
middle layer. This is, in part, where IDEs come in.

An IDE — an acronym that stands for Integrated Development Environment — is sim-
ply software that is meant to help with the development of more software. Logically
this could include much needed middleware.

IDEs have a mixed history, although they are becoming much more frequently used
now. At one stage, it has been humorously suggested, companies selling IDEs would
claim the letters stood for ‘It Does Everything’. Later, the poor user would feel that a
better fit for the acronym would be ‘I Do Everything’.

In this analysis, Trevor Eddols makes the connection between IDEs and middleware
before continuing to consider:

32

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2007 Spectrum Reports Limited

� Eclipse (and Rational)
� NetBeans
� IntelliJ
� JBuilder
� JDeveloper
� BEA Workshop.

IDEs emerge
IDEs grew out of the need developers experienced when
using simple text editors. Using a text editor, like Notepad
on a PC or vi on UNIX, enables you to enter your program
code. A text editor can also be a highly efficient way to cre-
ate simple HTML pages. It offers cutting and pasting, so
programs can be created quickly using parts of other pro-
grams. Most developers have used these at some stage in
their careers. But that is about where their usefulness ends.

What the IDE offers in addition is a compiler and a debug-
ger. That means the code that has been typed in — or cut-
and-pasted — can be tested before it goes to the next
stage. So, just to spell it out, an IDE usually comprises:

� a source code editor
� a compiler (and/or interpreter depending on

the programming language)
� a debugger.

Using an IDE, therefore, speeds up the generation and pro-
duction of working code. Now this code may need a GUI
(Graphical User Interface) so that it can be used by its
intended end users. Many IDEs can help with this and —
because the first attempt at creating the software may not
work fully or work in quite the way the end users hoped
(requiring the developer to create a second version, and
then a third, etc) — many IDEs now offer version control as
well. Those IDEs that are used for Object Oriented (OO)
software development can go further still — by integrating:

� a class browser
� an object inspector
� a class hierarchy diagram.

Many IDEs are language specific. This means if you are
planning to create a program in a particular language, you
use the appropriate IDE. For example, Boa Constructor can
be used to create a program in Python.

Others are platform specific. For example, Apple Mac users
can use Xcode as an IDE (this product is not available on
other platforms). Other IDEs, like Eclipse, can be used with
more than one programming language on more than one
platform.

Visual IDEs
Many IDEs are visual programming environments. Users
can create their desired application by creating flowcharts
on-screen by moving around the appropriate icons. The
icons represent blocks of code and they are linked together
with arrows. The final flowchart is then compiled to create
the required program. Visual programming like this is
meant to be easy to learn (basically boxes and arrows) and
is meant to make program development faster and less
error prone.

Users (and non-users) often hold strong opinions about
this. The flowcharts produced are usually based on the Uni-
fied Modeling Language (UML – q.v. www.uml.org), cre-
ated by the OMG (Object Management Group – q.v.
www.omg.org). The current UML specification is at Version
2.1.1 (early 2007).

Currently the most popular (and most used in enterprise
development) IDEs are:

� Eclipse
� NetBeans
� IntelliJ
� JBuilder
� JDeveloper
� BEA Workshop.

Of these, perhaps the best-known IDE is Eclipse
(www.eclipse.org). Although Eclipse is now an Open
Source project, it began life in IBM Canada. Originally, IBM
had VisualAge, which was really a number of different IDEs
for different programming languages (though its develop-
ment was closely linked with SmallTalk). IBM needed a
replacement for VisualAge, and Eclipse was the result.

In 2001 a consortium was formed so Eclipse could be
developed as Open Source rather than proprietary IBM
technology. In 2003 the Eclipse Foundation was created.

Why did IBM want Eclipse to be Open Source? The answer
is complicated, but it is probably because it (IBM) sensed
that Open Source was going to popular with developers,
and individuals working on their own would extend the
technology in ways IBM perhaps would not have thought
of introducing. It also meant that a robust IDE would be
available to developers that was linked to neither Microsoft
nor Sun Microsystems — both strong competitors to IBM at
that time.

Eclipse itself is written in Java, and was originally a Java IDE.
It can now be used for Java, PHP, C and C++ — plus other
languages. The Eclipse Web site says that Eclipse projects

IDEs for middleware — a beginner’s guide

33

provide tools and frameworks that span the entire software
development life-cycle, including:

� modeling
� development
� deployment tools
� reporting
� data manipulation
� testing
� profiling.

It goes on to say that the tools and frameworks are primar-
ily focused on building J2EE, Web Services and Web appli-
cations.

The Eclipse Consortium has been working on the Eclipse
Project, which is responsible for developing:

� the Eclipse IDE workbench (which is where
Eclipse tools are hosted)

� the Java Development Tools (JDTs)
� the Plug-in Development Environment (PDE),

which is used to extend Eclipse.

The Eclipse Tools Project concerns itself with developing
tools for Eclipse: this includes the C/C++ IDE and the
COBOL IDE. The Eclipse Technology Project looks after
research and development and education using Eclipse.

In addition to the usual facilities that an IDE provides,
Eclipse offers:

� a syntax highlighting editor
� incremental code compilation
� a thread-aware source-level debugger
� a class navigator
� a file/project manager
� interfaces to standard source

control systems.

Pre-built binaries can be downloaded to install Eclipse on:

� AIX
� HP-UX
� Linux
� Mac OS X
� Solaris
� Windows.

In order to run Eclipse, users need an appropriate Java run-
time. Eclipse can then be downloaded and unzipped into
whatever directory they wish. On Windows, you have a file
called eclipse.exe, which when run for the first time, com-
pletes the installation. After that, users will see the window
(Figure 5.1).

Clicking on File/New/Project allows users to create a

Figure 5.1: Initial Eclipse window

34

new project. Once a project has been created, the layout of
the Eclipse window changes. The Outline view is now on
the left side of the window, the Navigator is replaced with
a Package Explorer. This is called the Java Perspective
(Eclipse comes with a number of default perspectives).

The next stages are to create the directories that will con-
tain the source code and then add the project code. Next
the code is run and debugged — again using menu items.
Once it works, it can be made available to end users.

More than Eclipse
Eclipse is not the only IDE that COBOL users might choose.
LegacyJ’s IDE (www.legacyj.com/perc_ide.html) is available
on a range of Linux, UNIX and Windows systems. However,
it is itself based on the Eclipse IDE and it permits the devel-
opment of mixed language (COBOL and Java) applications.

ATX software has COBOL Studio (cobolstudio.atxsoft-
ware.com). This IDE is for COBOL applications. It too is an
Eclipse plug-in.

IBM supplies the IBM Rational Application Developer (RAD)
for WebSphere Software. Rational was bought by at the
end of 2002. Today the Rational Software division of IBM is
responsible for the software. Unsurprisingly, it is based on
Eclipse and allows for the visual design, construction,

testing and deployment of Web Services, portals and J2EE
applications.

Looking at its name, it is not surprising to find that it has a
built-in WebSphere test environment and, being a Rational
product, it is tightly integrated with other Rational tools,
such as:

� ClearQuest (for configuration
management)

� ClearCase (for version control).

The Rational Application Developer includes:

� code and visual editors for database
connections and SQL

� Enterprise Generation Language
� HTML
� Java
� JavaServer Faces and JavaServer Pages
� UML
� Web Services
� XML.

NetBeans and add-ons
If you want to try something other than Eclipse or one of its
derivatives, you could try NetBeans

Figure 5.2: Sun Java Studio Creator Welcome screen

IDEs for middleware — a beginner’s guide

35

(www.netbeans.org/downloads/index.html). It is currently
at Version 5.5.1. Like Eclipse, it is extensible and is also an
Open Source IDE. NetBeans 6 is due soon.

NetBeans enables developers to create mobile applications
as well as Web and desktop ones. NetBeans runs on Linux,
Windows, Mac OS and Solaris. NetBeans offers all the usual
IDE tools, such as window and menu management, set-
tings storage, etc — but in many ways is considered to be
fairly basic and not best suited for Web applic-
ations.

Sun Java Studio Creator, on the other hand, is intended to
excel at creating Web applications. The product provides a
visual programming environment. The drag-and-drop fea-
tures are based on JavaServer Faces technology. Users sim-
ply manipulate the JavaServer Faces components using the
GUI (illustrated in Figure 5.2).

Also available on the Solaris platform (like NetBeans and
Java Studio Creator) is Sun Java Studio Enterprise. This
offers:

� Web application development
� debugging
� support for Web Services and J2EE

(Java 2 Enterprise Edition) application
development.

This product provides a model-driven analysis, design and
development environment that uses UML. Users can make
use of features such as:

� the live roundtrip (bidirectional) markerless
model

� code synchronization
� code-reverse engineering.

Both Java Studio Creator and Java Studio Enterprise are
built on — and extend — the facilities and features avail-
able with NetBeans. As with Eclipse, NetBeans encom-
passes an ecology, not just one tool.

IntelliJ
IntelliJ IDEA (www.jetbrains.com/idea), currently at Version
7.02, is a Java IDE from JetBrains. It currently boasts that
more than 400 plug-ins are available for it and runs on
Windows, Linux and Mac OS platforms.

This product originally appeared in 2001. It was one of the
first to offer a set of refactoring tools. These enabled pro-
grammers to redesign their code.

Part of the appeal of IntelliJ IDEA is the inclusion of inte-
grated form design, and the fact that it integrates with
Open Source tools such as CVS and Apache Ant:

Figure 5.3: IntelliJ IDEA AJAX application development

36

� CVS (Concurrent Versions Control) keeps track
of changes to files thereby providing version
control

� Apache Ant automates software build
processes.

Written in Java, it uses XML to describe the build process
and its dependencies. IntelliJ IDEA allows users to create
AJAX applications with its native support for AJAX technol-
ogy. Figure 5.3 illustrates AJAX application development
using IntelliJ IDEA.

JBuilder
JBuilder is a Java IDE from CodeGear — although originally
from Borland. The first version was written in Delphi,
although by Version 3.5 it had been written in more con-
ventional Java.

The ability for users to add on extra tools led to Oracle
using the product as the basis for its original JDeveloper
tool. In 2006 Borland turned its Developer Tools Group into
a wholly-owned subsidiary called CodeGear, which now
owns JBuilder. JBuilder is now built on Eclipse.

New in JBuilder 2007 are ProjectAssist and TeamInsight.
The former is designed to shorten and simplify the creation
of team and project definitions. TeamInsight is meant to

enhance collaborative development with its centralized
portal, enabling team members to:

� monitor project activity for the source code
repository

� track recent check-ins
� view quality metrics
� see live burn-down charts for project progress.

Optimizeit 2007 for Eclipse delivers memory and CPU pro-
filing and debugging. Figure 5.4 shows an example of the
JBuilder LiveSource screen, which simultaneously replicates
changes to models in the code.

JDeveloper

JDevloper (www.oracle.com/technology/products/jdev/
index.html) from Oracle is currently free (since 2005) to
Oracle users. It can be used to develop applications in:

� BPEL
� HTML
� Java
� JavaScript
� PHP
� SQL and PL/SQL
� XML.

Figure 5.4: Example of a JBuilder Live Source screen

IDEs for middleware — a beginner’s guide

37

JDeveloper integrates with the Oracle Application Develop-
ment Framework (Oracle ADF), which is an end to end
J2EE-based framework intended to make application devel-
opment simpler. The original version of JDeveloper, back in
1998, was based on Borland’s JBuilder. In 2001 the prod-
uct was completely rewritten so it was based on Java. This
was the 9i version.

The current version (10.1.3.1) was released in January
2007, although a preview of 11g came out in May this
year. JDeveloper can be used to turn a Java class into a
Web Service. It will also generate the necessary WSDL and
all the JAX-RPC components. JDeveloper provides declara-
tive interfaces for the creation and definition of EJBs. This is
illustrated in Figure 5.5.

BEA Workshop
BEA Workshop (http://www.bea.com/framework.jsp
?CNT=index.htm&FP=/content/products/weblogic/work-
shop/) is a family of commercially-available products — also
based on the Eclipse IDE. The products in the family are:

� BEA Workshop for WebLogic V10.1
� BEA Workshop Studio V10.1.

These are aimed at programmers in SOA (Service Oriented
Architecture) environments. BEA Workshop for JSP pro-
vides a commercial Eclipse Java Server Page (JSP) editor and
is free. It provides a JSP source editor as well as a WYSI-
WYG visual JSP editor, which support simultaneous
source/visual editing.

Management conclusion
There are many other Integrated Development Environ-
ments available. Many of them are based on Eclipse: some
are little more than feature-rich text editors while others
can be used on a variety of platforms for a range of pro-
gramming languages and/or are highly specific about
which platforms they run on and with which languages
they can be used.

The key conclusion is that all of these — and the ones
described above — have developers (and organizations)
that use them regularly and that are familiar with their
strong points and their peculiarities. As Mr. Eddols has
described, all of them are oriented to reducing the time it
takes a programmer to create the applications — including
the middleware that connects the different software
pieces.

Figure 5.5: JDeveloper’s EJB creation

38

Source for Figures 5.1-5.5:

Figure 5.1:
http://www.onjava.com/pub/a/onjava/
2002/12/11/eclipse.html?page=1

Figure 5.2:
http://www.softwarereality.com/reviews/creator_ea.jsp

Figure 5.3:
http://www.jetbrains.com/idea/features/ajax.html

Figure 5.4
http://www.codegear.com/article/36556/images/
36556/JavaLiveSource1.PNG

Figure 5.5:
http://www.oracle.com/technology/products/jdev/collat-
eral/papers/1013/jdev1013_overview.pdf

IDEs for middleware — a beginner’s guide

39

Risk management

and middleware projects

Nick Denning
Chief Technology Officer
Strategic Thought

Management introduction
Nick Denning is the Chief Technical Officer of Strategic Thought Group Plc (Wimble-
don, UK) which he founded in 1987, having previously worked for Logica. Strategic
Thought, since inception, has been involved with ‘big software’, from Ingres into the
middleware market with Tuxedo before WebSphere middleware products and the ser-
vices around them.

In 2001 Strategic Thought launched its first product, called Active Risk Manager. This is
now a leading enterprise risk management solution, with customers from backgrounds
as diverse as NASA, Lockheed Martin, the UK’s Ministry of Defence, London Under-
ground, Thames Water, Nestle and the 2012 Olympic Games.

Much is talked about risk management (RM). Many people, however, find it difficult to
adopt risk management techniques. In this analysis Nick Denning illustrates — through
the use of selected features of an enterprise risk management solution — the signifi-
cant benefits for managing projects that can be obtained quickly and with minimum
training. In particular he relates this to middleware projects.

40

All rights reserved; reproduction prohibited without prior written permission of the Publisher.
© 2007 Spectrum Reports Limited

What is risk?
What is risk? It is uncertainty. The underlying premise of
Risk Management (RM) is that all endeavors and invest-
ments serve to increase share/stake holder value, but all
investments and endeavours face degrees of uncertainty:

� are the requirements unambiguous?
� will the hardware be delivered on time?
� have the suppliers been late before?
� are the team members properly trained?
� are there any flaws in the design?
� will the customer sign off promptly, as defined

in the contract?
� is an SLA in place?
� will the SLA guarantee delivery?

Most will be able to identify many more known issues
which must be resolved as risks and which will have to be
addressed in any attempted endeavor. The issue is how
account for this risk? The ‘old school’ approach is to slap
on a healthy contingency as a percentage of the total cost
and time for the project. However, how many projects
(with what seems an appropriate amount of contingency)
are still late and over budget? The ‘new school’ approach
is risk management. In this analysis I take an example pro-
ject and show how one can:

� structure a project plan in such a way that the
approach reflects good practice to minimize
risks inherent in a middleware project

� apply three point estimation to a good project
plan and then apply schedule analysis to deter-
mine the likely outcome

� identify opportunities and risks that would
impact the plan, either positively or negatively,
and describe how to deal with these.

The benefits of following the approach described are that:

� organizations obtain a more finely grained and
accurate mechanism for calculating contin-
gency

� the tasks and their associated costs, time and
resources required to address risks are built
into the plan from the start so the plan is more
accurate and realistic

� a knowledge of risks is shared, and specific
responsibilities for addressing risks are clear
and defined in the project initiation phase.

In the following sections I illustrate aspects of this approach
as applied to a middleware project. (If further detail is
required the author offers to provide this.)

Applying risk management
techniques to a middleware project
In the August 2007 MIDDLEWARESPECTRA, I identified a
range of risks that apply to middleware projects. That
analysis was able to identify that many of those risks
related to people risks. Indeed I identified seven key risks —
and all of these related to people factors.

Using modern risk management techniques it is possible to
provide a considerably enhanced degree of precision
around this process. This comes, however, with a price:

� the process has to be defined
� people have to be trained
� there is a cost of carrying out this process to

generate the risk information
� organizational change must be managed to

exploit the risk management information
generated.

The objective of this analysis is to demonstrate the applica-
tion of simple risk management techniques to smaller pro-
jects — what might be called ‘light touch’ risk
management — in order to obtain a clear benefit from the
implementation of a simple process.

Is that effort worth it?
The IT industry has seen initiatives come and go, with asso-
ciated specialist practitioners ‘gold plating’ their discipline
to generate deliverables that are ends in themselves rather
than supporting objectives that deliver an organization’s
goals. Is enterprise risk management a similar ‘fad’ that will
pass soon? I believe not. This is because, inherently, risk
management is something that we all do on a daily basis in
almost every aspect of our lives. The issue is, therefore, not
whether or not an organization will practice risk manage-
ment, but rather whether or not an organization will incor-
porate RM into its business processes using a software
solution because a return on investment (RoI) can be iden-
tified.

Experience on very large programs shows that risk manage-
ment provides a substantial benefit. It can be difficult to
measure the benefits of RM at a micro level — how do you
measure the cost of something that has not happened?
However organizations that have adopted RM into their
processes observe that the they have avoided major project
failures. Teams of ‘specialist risk practitioners’ who are
responsible for the successes in avoiding failure have devel-
oped increasingly complex risk processes. Based on the
lessons learned, organizations are currently implementing
risk simplification processes. It is necessary to remove the

Risk management and middleware projects

41

‘gold plate’ and focus on ‘simple processes, quickly exe-
cuted’ that use accurate data and deliver well managed
risks.

Recent legislation is increasing the personal liabilities of
directors. Companies must now report on the risks that
their organizations face and are called to account if those
risks have not been properly managed. Thus executives
have an incentive to introduce risk management systems to
ensure that their organizations can identify, assess and
manage their risks learning from experience and develop-
ing the overall capability for risk management within an
organization. Indeed, the greatest obstacle to the introduc-
tion of an RM solution is not cost but:

� managing organizational change
� training staff
� motivating people to undertake risk

management

because each person involved must see the benefit that
arises.

Implementing organizational change is difficult as those
that have implemented BS5750, ISO9001, AQAP 13, CMM
and others will attest. We generally advocate a combined
top down (corporate-led) and a bottom up (project, practi-
tioner or evangelist-led) approach to capture accurate data

with which to ensure that all staff involved in managing
risks. We have identified that, as the capability of such
experts increases, then risk management becomes more
accomplished.

An example
To attempt to understand this, I am going to use an exam-
ple middleware project and apply some straightforward risk
management techniques to it. To set the scene in perspec-
tive, and to illustrate the benefits obtainable, understand
that the work described represents about 3 man days of
effort. This includes:

� the construction of a project plan
� the allocation of people
� the assessment of a single risk and a single

opportunity.

Remember, in this context, that the objective is to try to
avoid treating risk management as a science — which is
expected to deliver right/wrong and go/no-go answers —
but rather as a process aid. For instance it is not essential to
capture every risk that might be relevant to a project.
Rather the imperative is to focus on the major risks.

The simple process that might be followed goes as
follows:

Figure 6.1: Quantitative Impact Analysis

42

� identify the requirements to deliver against
� identify the tasks that need to be completed

to deliver those requirements (rather than
following the normal practice of just adding
10% contingency at the end to every task)

� assess every task and say what is the short-
est time in which it is possible to complete,
the most likely time and the longest time —
and then apply the same to the associated
costs.

Many project plans are simple task lists which might be
equally well set up in Excel. In practice there is limited pro-
ject management going on in them. It is, however, neces-
sary to continue to build a plan by identifying the
dependencies between tasks. Providing one can link the
tasks, one can schedule analysis in a risk management tool.

Microsoft Project (MSP) is quite flexible. Having created a
first cut project plan in MSP and defined the expected cost
and duration for each task I can now do three point esti-
mation to assess the best case, most likely and worst case
outcome for each task. From a Gantt chart one can selec
(say) Add Columns and include the columns Cost1, Cost2
and Cost3 together with Duration1, Duration2 and Dura-
tion 3. It is then possible to have the locations hold three
point estimates; now copy the initial cost and duration val-
ues into Cost2 and Duration2 and assess each task

and enter the best and worst cases for cost into Cost1 and
Cost3 respectively. Then repeat this for duration.

With this, I can start to load the project into a risk manage-
ment tool and analyze the project directly for the most
likely predicted out come in terms of date and cost, using
Monte Carlo simulation techniques. This will walk through
all the possible routes through the tasks using the three
point estimation and a probability distribution to determine
a range of probable outcomes for the project. In contrast to
‘simply’ just adding up all the worst case numbers and
coming up with a huge project cost and length (which
tends to produce a result that assumes that it is very
unlikely that everything is going to go wrong), this will pro-
duce a more sensible result.

Now it is time to run quantitative analysis tools on the sys-
tem to look at likely cost outcomes and schedule out-
comes. There are currently no risks in the system so the
project will be analyzed based on the uncertainties defined
for the project tasks. The project estimate (Figure 6.1) was
approximately £2.80M based on the summary totals of the
tasks. This analysis tells us that there is:

� a 90% chance of bringing this project in at
£3.12M

� a 50% chance of delivering at £2.95M
� a 10% chance of delivering at £2.80M.

Figure 6.2: Predicted outcomes with risks

Risk management and middleware projects

43

Now I can perform additional calculations for separate seg-
ments of the project, selecting a particular part of the work
and breaking down the structure to be analyzed. Using the
built-in math, this gives an estimate that has (this far) taken
just a few minutes to create. Most people do not even
need training to reach this far, though most need a little
guidance from a risk consultant in the organization.

Adding risk and mitigation
At this point I can start to add risks. To keep it simple, a
pretty straightforward risk has been selected. In the project
there is a particular point where the design has been con-
firmed and it is time to order hardware. The assumption is
that a 20 day lead time is sufficient and this has been incor-
porated in the project plan by putting a 20 day lag between
tasks.

But what happens if the equipment cannot arrive within 20
days from when the order was placed? In putting in the
cost some assumptions have been made about the cost
and delay to the project and team — who are all fired up
and ready to go but suddenly without the systems environ-
ment on which to work. A team of eight people doing
nothing for two unexpected weeks incur a significant
cost.

To analyze this, first the risk is entered. Next the risk is
scored to quantify the cost and likelihood of the risk occur-

ring after which I can consider any mitigation activities
which, if carried out, would reduce the likelihood of the
risk occurring and the cost/time impact if it did occur. There
might be a number of things that can be done — these do
not necessarily have to cost money. Nevertheless it is nec-
essary to record these in order to plan ahead.

Risk assessment
Having entered this risk into the system one can now re-
assess the project. Figure 6.2 provides an assessment of the
exposure to the specific risk showing that the predicted
outcome at the 10%, 50% and 90% probabilities rise to
£2.80M, £2.98M and £3.18M respectively.

The need now is to investigate the likely outcome if I invest
in mitigation activities in order to try to reduce the risk to
the target level. This can be shown on the green line in the
S-curve below (Figure 6.3) — giving a reduction in the
expected outcome cost of 10%, 50% and 90% to the
£2.8M, £2.95M and £3.12M — and suggesting that it is
worthwhile to carry out the mitigation tasks. (Typically one
would analyze many more risks and would expect a greater
potential benefit having analyzed all the risks in this way.)

So far, so good. The risk process has been addressed and
assessed. Ways to mitigate it have been introduced and
costed. The analysis has determined that it makes sense to
carry out the mitigation. Now it is time to:

Figure 6.3: After risk and mitigation

44

� add the new tasks (that enable the mitigation
to occur) back into the original plan

� manage down the risk to the green target
level.

(It is possible, of course, to identify mitigating actions
where the cost is not justified, and the green line is actually
further to the right than the red line. These are mitigations
that I would probably ignore.)

Has enough
contingency been allowed?
Typically a project manager will agree a percentage of the
total project cost and time for contingency. But how accu-
rate is that? In the above analysis task by task I have con-
sidered the required contingency for each task. Due to the
detailed analysis exposed to all, there should be much
greater confidence in the initial plan and the associated
costs and time predicted in Figure 6.1 using schedule analy-
sis.

I then analyzed the risks of the project and identified the
mitigating activities and their costs before including in the
plan the tasks attributable to the mitigation activities. I also
made provision for the resource that will be required to
carry out those mitigations. The result is that integrity of
this planning process is a major improvement over simply
adding 10% to the time and budget.

Opportunity investigation
Risk is usually considered threatening. This is not the whole
story, however. One should also use risk management tools
to investigate opportunities.

For instance, when building middleware solutions, a project
typically uses many environments for development, test,
UAT and so on. These can be extremely expensive to con-
struct. I will now consider the opportunity to exploit virtual-
ization, using products like those from VMware.

Such an approach can reduce the cost of the hardware and
software required. It may also be able to deliver a more
effective Business Continuity/Disaster Recovery
solution.

Let me assume, however, there is some organizational
skepticism (that perhaps VMWare’s technology is not to be
trusted). I will, therefore, build into the plan a model which
considers the opportunity for savings, including the cost of
investing to demonstrate that VMware is a viable techno-
logical option — and following the same processes as
those described earlier. This results in an S-curve (Figure
6.4).

Impact analysis shows the current (red) and target (green)
expected outcomes — and includes the cost of mitigation
— demonstrating a significant improvement. Thus the
investment in virtualization software and the costs of

Figure 6.4: Analysis for an opportunity

Risk management and middleware projects

45

demonstrating to the design authority that it is appropriate
are justified by the savings to the projects that will be
achieved.

Despite the organizational skepticism surrounding virtual-
ization, it should be possible to build a business case, using
this analysis, to explain that there is a 90% chance of sav-
ing £350K and a 50% chance of saving £580K on the over-
all project. It then depends on good project management
to ensure that the tasks on the project plan are followed
through.

Key middleware project risks
In the introduction above I referred to the key risks relating
to middleware projects. Time and space prevent me setting
up and analyzing each risk. Instead I will now select one of
those risks and see what further benefits can be obtained
from risk management when managing those risks.

Organizations can build up a knowledgebase of generic
risks related to their industry and specific risks that apply to
their organization, and ensure that risk managers consider
whether or not the risks apply to their project. It is impor-
tant to maintain the confidence of the business sponsor
that the project is progressing under good management.
By producing project plans and risk plans and then deliver-
ing progress in accordance with the plan that should main-
tain this confidence.

Indeed, even if a risk does impact the project, having
demonstrated that the risk was identified, assessed, that
mitigation action was taken and that contingency plans
have been prepared, the project sponsor should be confi-
dent that the team can deal with the issue.

Management
With the risk assessment complete the priority is to manage
the project through its lifetime to ensure that all the mitiga-
tion plans are carried out as planned. In effect the need is
to manage risks down.

Figure 6.5a shows a waterfall chart which shows when the
mitigations entered above need to be completed. To man-
age the project all I need to do is return to the risk man-
agement tool and update the risks as each of the project
stages are encountered and completed. All of these
changes are then audited as historical data. They provide
the basis for the reports.

How does the project sponsor know that risk management
is being undertaken? The following fragment from a report
(Figure 6.5b) shows whether each person is completing the
relevant risk actions by the due date.

Management conclusion
The key conclusion to be drawn from Mr Denning’s analy-

Figure 6.5: Waterfall (6.5a) and report fragment (6.5b)

46

sis is that one can take a typical project plan (even one pre-
pared in Microsoft Project) and create three point estimates
for each task to model contingencies on a task by task
basis. Using industry standard risk management software,
within a few key strokes one can obtain a good idea of the
likely outcome for any project based on the best assess-
ment of the tasks that were identified.

Using a knowledge base of risks, one can consider which
tasks might be affected by those risks. From this one can
assess the likelihood and cost of each risk and predict the
overall impact on a given project. The same can occur for
opportunities to reduce the cost of the project.

With this information organizations can then determine
whether there is a return on investment that justifies
undertaking additional tasks in order to mitigate risk fur-
ther. This enables management to answer the perennial
question of how much contingency should be allowed.
When there are a number of projects competing for scarce

resources and limited budgets this approach offers a clear
view of the likely cost that must be set aside for each busi-
ness activity and enables the selection — or discarding —
of projects for implementation. The decisions will be based
on a risk adjusted return on investment calculation, one
that has been carefully assessed.

In addition there is an ongoing reporting framework — to
check that everyone carries out their designated tasks so
that risk is progressively reduced. Rather than have to wait
until key milestones, organizations can have confidence
that the project management approach is effective and
they can obtain early warning when projects go off track
and why.

This is remarkably simple. Almost every operation given in
this simple example demonstrates how straightforward this
can be. As so often in system, and just as applicable to risk
as in other areas, the best management practice conforms
to the KISS principle — keep it simple, stupid.

Risk management and middleware projects

47

Members of the
International Advisory Board

Charles C.C. Brett
President, C3B Consulting Limited &
President, Spectrum Reports

William Donner
Fenway Partners

Kathryn Dzubeck
Executive Vice President,
Communications Network
Architects, Inc.

Ellen M. Hancock

Paul Hessinger
Vision UnlimITed

Pierre Hessler
Deputy General Manager,
Cap Gemini

Michael Killen
President, Killen & Associates, Inc.

Dale Kutnick
Chairman, Meta Group, Inc.

Thomas Curran
Consultant

Norris van den Berg
General Partner, JMI Equity Fund, LP

Fiona A. Winn
Managing Editor & Publisher
Spectrum Reports

Additional contributors
include:

Jay H. Lang
Distributed Computing Professionals

Keith Jones
IBM

David McGoveran
Alternative Technologies

Anura Gurugé
Consultant

Amy Wohl
Wohl Associates

Martin Healey
Technology Concepts Limited

Mark Allcock
J.P. Morgan Asset management

Aurel Kleinerman
MITEM

Chris Cotton
Consultant

Nick Denning
Strategic Thought

Yefim Natis
Gartner Group

Rosemary Rock-Evans
Consultant

Beth Gold-Bernstein
Hurwitz Group

Mark Lillycrop
Arcati

Eric Leach
ELM

Randy Rhodes & Troy Terrell
Black & Veatch

Colin Osborne
The Tivyside Group

Roy Schulte
Gartner Group

Mark Whitney
Delta Technologies

Jim Johnson
Standish Group

Tom Curran
TC Management

Alfred Spector

Max Dolgicer
International Systems Group, Inc.

Peter Bye
Unisys Systems and Technology

Steve Ross-Talbot
Enigmatec

Peter Houston
Microsoft Corporation

Jeff Tash
Database Decisions

Ed Cobb
BEA Systems

Bernard Abramson
Consultant.

Geoff. Norman
Xephon

Jim Gray
Microsoft Research

Jason Longo
PRL Scotland

Wayne Duquaine
Grandview DB/DC Systems

Steve Craggs
Saint Consulting

Tom Welsh
Consultant

Gustavo Alonso
Swiss Federal Inst. of Technology

Mike Gilbert
Micro Focus

Tony Leigh
Sensima Technologies

MIDDLEWARESPECTRA
is published and distributed
worldwide by:

Subscription Center
19 St. Michael’s Road
Winchester SO23 9JE
England
Telephone: +44 1962 878333
Fax: +44 1962 878333

Research and Editorial Office
19 St. Michael’s Road
Winchester SO23 9JE
England
Telephone: +44 1962 878333
Fax: +44 1962 878333

Email and Internet
Email:
spectrum@
middlewarespectra.com

World Wide Web:
www.middlewarespectra.com

ISSN 1356-9570

[incorporating FINANCIAL
MIDDLEWARESPECTRA
ISSN 1460-7220]

