FEBRUARY 1994

Programming & Design s

Wh we N d nb' . CHARLES F. BOWMAN
yﬂrient:: Svstjg::lts 28 St to s, 00 detbes could et fre

24 Ways to Improve i
natahase Pepformance 2 database performance keeping you up at

c [| h DaviD MCGOVERAN
a“ t Lnse W at 42 “Nothing From Nothing” continues with tle ks
You Never Had

I] t M" I " 'I' pp' g LIsA LEWINSON
a a I"I“g- a In Butried in historical data is critical information;
the Mother Lode

VOL. 7 NO. 2

as soflware systems reach greater complexity.

night? Here's what you can do to improve it.

myriad multivalued logic solutions for nulls.

a new wave of tools is trying to unearth it.

DEPARTMENTS

et .I EDITOR’'S BUFFER 7 Taler De database? Ya; DB2, OO, and more.

ﬁ?} L2 =S :‘ ACCESS PATH] 1 Readers respond to recent DBPD articles.
'» DATABASE DESIGN] 3 When questions create more questions . ..
ACCORDING TO DATE 1 g Answers to C. [. Date’s recent puzzlers.
CLIENT/SERVER FORUM 23 DBMS integrity: Therein lies the rub.
DESKTOP DATABASE 58 Reviewing 1993's PC database developments.
ENTERPRISE VIEW Bﬂ How Access and Paradox fare for modeling.

SQL UPDATE E7 SQL Access Group and the CLI wars.

PRODUCT WATCH 70 Never a [ull in the database market.

DATABASE PROGRAMMING & DESIGN (ISSN 0895-451B) s published monthly, except in Octobes. which is semi-meonthly and contains the DATABASE PROGRAMMING & DES

er's Guide. by Miller Freeman. Ing,, 600 Harrison St.. San Francisco, CA 94107, (415 905-2200. Please direct advertising and editonial inguings (o this address. For subscnplon in

post

(800} 289-0168 (outside U.S. (303) 447-9330) SUBSCRIPTION RATE for the U S, is 547 lor 13 issues. Canadian/Mexican orders must be prepaid In U.S. funds with addi
56 per year. Canadian GST Permit #124513185. All other couniries oulside the U.S, must be prepaid in U,S. lunds with additional postage at $15 per year for surface mail or 540 per year lor air
mad, POSTMASTER: Send addrass changes to DATABASE PROGRAMMING & DESIGN, P.O. Box 53481, Boulder, CO 80322-3481. For quickest serice, call tol-free (BOD) 289-0169 (n
Colorado or outside the LS. (303) 447-9330), Please allow six weeks for change of address to take effecl. SECOND CLASS POSTAGE paid at San Franclsco, GA 94107 and a1 additional
mailing offices. DATABASE PROGRAMMING & DESIGN is a registered trademark owned by the parent company, Miller Freernan Inc, All matesial published In DATABASE PROGRAMMING &
DESIGN is copynghled ® 1994 by Miler Freeman Inc. All rights reserved. Reproduction of malerial appearing in DATABASE PROGRAMMING & DESIGN is lorbidden without permission, 16mm
microfim, 35mm microfilm, 10Smm migrofiche and article and issue photocopies are available from University Microfims nternational, 300 N. Zeet Rd., Ann Arbor, MI 48106 (313) 761-4T00

DATABASE PROGRAMMING & DESIGN
5

NN
BY DAVID MCGOVERAN

Null support in RDBMS applications implies multivalued logic support—
with all its attendant problems. What are designers really looking for?

Nothing from Nothing
Part Ili;

GCan't Lose

What You

Never Had

ROFESSIONAL DBMS

users play a variety
of roles: database administrator,
database designer, application de-
veloper, and end user. When us-
ing a DBMS, I doubt any consider
whether or not the DBMS supports
a many-valued logic. (Indeed, if
the products themselves are any
evidence, I doubt DBMS makers
examine this issue either.) Profes-
sional DBMS users often question
whether the DBMS and database
design suppoért nulls, however.
For most users, “SQL nulls” have
become a catchall means of ad-
dressing a variety of problems.
Even end users, who used to be in-
terested in application support of
“don’t know” or “not applicable”

responses during data entry, now
treat this issue as a question of
null support.

But why exactly are profes-
sional users requiring “null sup-
port” even if—though they may
not realize it—this requirement
implies that they want support for
many-valued logics? Last month
in Part II, we considered why
many-valued logics were inappro-
priate as a DBMS’s foundation. In
Part III this month, we will exam-
ine the key reasons database de-
signers and users find themselves
wanting the support of a many-
valued logic vis-a-vis null support.

For this analysis to make any
sense, it is important to review our
understanding of a database’s se-

mantics. First, a database design
implements a model or represent-
ation of some portion of the world
of experience called the “universe
of discourse.” It defines the per-
missible facts that can be repre-
sented, of which only some are
made “active” by storing data in
rows in relational tables. For these
permissible facts 10t represented by
rows in the database, the closed-
world assumption permits us to say
that they are ““false.”

Careful consideration of your
own database application will dem-
onstrate that the existence or ab-
sence of a row in the database re-
presents a statement about your
knowledge of the application do-
main. Specifically, a row R in a ta-

FEBRUARY 1994
42

ble representing a predicate P(x)
means that “we know that P(R) is
true,” while its absence means “we
know that P(R) is false.” Under the
closed-world assumption, an im-
permissible set of column values
(that is, those values not within
the defined universe of discourse)
cannot be used to form a predicate:
the result would not be a well-
formed formula.

Given this understanding of
database semantics, it is my posi-
tion that every appearance of a
null in a database represents some
form of conditioned knowledge. By
conditioned knowledge, 1 mean
that a precise expression of knowl-
edge (such as the choice of a par-
ticular value in the place of a null)

EERREREER

aun

is determined by some condition
that cannot be satisfied. For ex-
ample, when we permit a data en-
try field to be “not applicable,” the
mere appearance of this field on
the screen could be conditioned
on whether or not a value is appli-
cable; that is, some condition must
exist that, if satisfied, would deter-
mine whether the data entry oper-
ator would be asked for a field
value.

We have long known that
some facts about the world are con-

ditional, in the sense that “some, |

but not all, instances of x have
property P.” We understand condi-
tional relationships, such as “most
instances of x have relationship

y.” Indeed, it was such consider-
ations that led to the introduction
of the so-called necessity and pos-
sibility quantifiers, thus creating
modal logic. In the remainder of
this article, we will examine var-
ious kinds of conditioned knowl-
edge that lead to the appearance of
nulls in the database.

I will first examine the types
of conditioned knowledge that en-
courage database designers to speci-
fy columns as permitting nulls,
including;:

O Conditional relationships

O Conditional properties

O Conditional operations

OO Conditional constraints.

[will then examine the var-

R(x, y) to y for some instances of | ious types of nulls that data entry

DATABASE PROGRAMMING & DESIGN
43

ARTWORK BY: BARTON STARLER

operators might invoke (called “con-
ditional information” here), and
relate these nulls to the kinds of
conditionality handled by data-
base designers. In the absence of
maliciousness, carelessness, or ig-
norance (as due to, for example,
lack of training), these situations,
inclusively, account for the ap-
arance of nulls in a database
and, therefore, for the perceived
need for many-valued logics.

CONDITIONAL RELATIONSHIPS

| We can characterize a relationship

among types of entities in many
ways. The number of entities in-
volved in the relationship is called
its degree. When the relationship is
not computed by a function or trans-
formation, it is usually specified as
a simple mapping among entities
of the types. Mappings are often
characterized by the ratio of the
numbers (the cardinalities) of each
entity participating in the relation-
ship. For example, a mapping of
degree two is often characterized
via the notation n:m, which means
that n entities of one type have the
designated relationship to m enti-
ties of a second type. Note that the
notion of a n:0, 0:m, or 0:0 relation-
ship conveys no positive informa-
tion since it says that the relation
holds for no entities of one of the
types.

Perhaps the mapping most
familiar to relational database de-
signers is the “parent-child” type
of relationship or, more precisely,
the 1:m (one to one-or-more [or
many]) relationship. For each in-
stance of the “parent” entity, zero
or more instances of the child enti-
ty exist. Such a relationship is gen-
erally modeled via a foreign key
in each row of the child relation
having the value of the primary
key of the corresponding row in
the parent relation. By coincidence,
this technique also works for the
1:0/m (one to zero-or-more) rela-
tionship (the 1:1 and 1:0/1 rela-
tionships are special cases of the
1:0/m relationship). Of course, it is
a little strange to think of a “par-
ent” who has'no “children”: How
can something be a parent by vir-
tue of a relationship to nonexis-
tent children?

Suppose that not every child
instance has a corresponding par-
ent, which is the 0/1:0/m (mean-

PEL L B B g df b

Nulls represent
some form of
conditioned
knowledyge

ing zero-or-one to zero-or-more)
relationship. We will refer to such
relationships as “conditional” be-
cause it represents a situation in
which not all instances of any one
of the involved entities are related
to some instance of the other enti-
ty. For example, consider the case
of real children generally. Not all
children have identifiable parents:
it is an unfortunate fact that the
parents of some children are for-
ever unknown due to the inhu-
manities of wars, kidnappings, or
other causes. Similarly, it is not
uncommon to find a conditional
relationship modeled using the for-
eign key approach, with the spe-
cial case of zero references (as in
the child that has no parent) being
modeled by entering a null in place
of a foreign key value.

CONDITIONAL PROPERTIES
In logic, an entity type (or class) is
said to have defining properties and
meaning criteria.’ A candidate in-
stance must satisfy all the defining
properties to be of the entity type.
By contrast, the candidate might
satisfy only some of the meaning
criteria: Any individual meaning
criterion counts only as evidence
that the candidate is of the entity
type. However, the exhaustive dis-
junction of all meaning criteria is a
defining property.

For example, one defining
property of the insect entity type
is that it must have six legs. How-
ever, having wings is a meaning
criterion: Some insects have wings
and others do not. As another ex-

ample, the definition of a poem
abounds with meaning criteria:
some poems have meter, others
rhyme, still others may use meta-
phor, and so on. Conditional prop-
erties are often modeled by per-
mitting nulls in the columns
representing the meaning criteria.
Thus, a table containing descrip-
tions of insects might have a col-
umn characterizing wing types that
would be set to null if the particu-
lar insect did not have wings.
Similarly, a table about poems
might have a column to specify
the poem’s meter that would be set
to null if the poem had no meter.
By extension, a compound foreign
key may be entered as partially
null when a part of the referenced
primary key is, in fact, a meaning
criteria.

CONDITIONAL OPERATIONS
Various operations supported in
relational DBMS products operate
on multiple types of operands. For
example, whereas the join operates
on two relations that are related in
a particular manner, the outer join
operates on two conditionally re-
lated relations. Similarly, the outer
union operates on two relations
that only conditionally satisfy the
union compatibility relationship.
In a sense, then, the operands of
these operators are conditionally
defined. [will refer to such opera-
tions as conditional operations.

Because the relationship among
operands is not uniform for all in-
stances of the operands, the result
of a conditional operator is not a
uniquely defined relation. Specifi-
cally, the result of an outer join or
outer union does not, in general,
have a unique relation predicate.
Instead, it is a collection of possi-
ble relations: one relation for rows
without nulls, plus one for each
extant combination of columns con-
taining nulls,

Suppose we had an employ-
ees table EMP and a managers ta-
ble MGR with primary keys E_ID
and M_ID, respectively, both from
the same domain. An outer (equi-)
join of these tables on E_ID and
M_ID and returning E_ID and M_D
would typically return at least two
tables: one having the relation
predicate “employee E_D with prop-
erties P(E_ID) managed by manager
M_I0” and one with the simpler re-

FEBRUARY 1994
44

lation predicate “employee E_ID
with properties P(E_ID).” Since this
situation cannot be directly mod-
eled in the relational algebra, the
various result relations are made
uniform by creating extra columns
containing nulls. These nulls are
of the type “value is the empty
set.”

CONDITIONAL CONSTRAINTS
For some constraints, the time at
which they must be satisfied can-
not be stated in advance; they are

| neither at statement completion

time (immediate) or commit time
(deferred). As such, they are nei-
ther state nor transition con-
straints. For example, an investor
“selling short” implies a commit-
ment to buy the sold stock at some
future, unspecified time. As such,
selling short involves a condition-
al integrity constraint (balancing
the amount of stock “sold short”
with the amount purchased) that
is satisfied at a time dependent on
any event or other condition.

Because conditional constraints
imply the existence of entity in-
stances that would satisfy the re-
quired constraint, these instances
are sometimes modeled by includ-
ing special entries in the database
in advance of the time at which
the constraint is satisfied in reali-
ty. This approach creates entity in-
stances for which the values of cer-
tain properties cannot be known.
The missing information is often
modeled with nulls, to be replaced
at some later time with values. In
the interim, the conditional con-
straint is satisfied by programming
it to accept either real values or
nulls.

For example, a stock trade
might be modeled by a transaction
that inserts into a STOCK_SALES table
a row containing the stock identi-
fier, its sell price, date, and recipi-
ent, and into a STOCK_BUYS table the
stock identifier, buy price, date, and
seller. Selling short would then
insert the appropriate sell infor-
mation, but would insert a row for
the stock identifier in the STOCK_
BUYS table, setting the buy price,
date, and seller columns to null
until some later time. The con-
straint would be written to accept
the existence of such a row, effec-
tively deferring the real constraint
check indefinitely.

EERSERRERRRRERE

What are users
trying to convey
when they use
nulls?

CATPTURING NOTHING:
CONDITIONAL INFORMATION
Having considered the various
data modeling issues that contrib-
ute to nulls, we are left with situa-
tions in which the database de-
signer must anticipate incomplete
data entry. What are end users try-
ing to convey when they enter a
null into a field during data entry?
C. J. Date has listed the more com-
mon possible meanings that may
be attributed to a null.? Say we had
a DBMS capable of distinguishing
all these flavors of null. Let's ex-
amine the use of each in turn.

Value not applicable. For ex-
ample, a data entry form may con-
tain fields for an employee’s name
and spouse’s name. If the employ-
ee has no spouse, the user may en-
ter "N /A" for “not applicable” or
may simply skip the field, leaving
it empty. The program, in turn,
may enter the spouse’s name into
the database as a null. However,
some thought shows that no entry
into the database should have been
made unless an integrity constraint
requires employees to have spouses.
In that case, the spouse’s name
would be required; failure to enter
a value from the domain of possi-
ble spousal names would be a con-
straint violation. The “value not
applicable” is the data entry opera-
tor’s way of handling either a con-
ditional relationship or a condi-
tional property.

Value unknown (temporarily).
Say the same data entry form is
used, but this time the user simply
does not know the name of the

a ; o

spouse. The employee has a spouse,
but the name has not been obtained.
In other words, the field is “appli-
cable, but value temporarily un-
known.” This situation may occur
quite legitimately; it is often the
case that not all necessary infor-
mation for a given task is gathered
at one time. Of course, not all in-
formation relating to a task can be
deferred. For example, some unique
designation of the employee is es-
sential, even if this designation
happens to be an arbitrary, unique
employee identification number.
In the case of the spousal name, a
need exists to recognize the exis-
tence of a spouse without neces-
sarily knowing the spouse’s name.

“Value unknown” is another
way data entry operators handle a
conditional property, while at the
same time conveying the belief
that a value will be known at some
time in the future. Unfortunately,
the “value unknown” kind of null
does not quite succeed; it captures
the existence of a relationship, but
does not capture the fact that a
unique designation for the spouse
exists. In particular, it cannot treat
two occurrences of the “value un-
known” designation as the same
and all others as different. For ex-
ample, if the form also had a place
for children of the spouse (as, for
example, those from a different
marriage), it would be very diffi-
cult to capture this information in
a database without resorting to re-
peating groups. Few people would
make this mistake on paper: some
means would be invented to estab-
lish which “value unknown spouse
name” had which children!

Value does not exist. Suppose
that employees normally have so-
cial security numbers, but one par-
ticular employee does not. Al-
though it might be reasonable to
expect that the employee would
eventually get a social security
number, some foreign employees
might never be able to obtain them.
Thus, the data entry operator
might know that the value belong-
ing in the social security number
field not only was not known, but
it would never even be assigned.
“Value does not exist” is another
way of handling a conditional
property, while conveying the be-
lief that the value can never be
known.

FEBRUARY 1994
46

Value undefined, Some fields
are defined in such a way that the
appropriate value is “undefined”
in certain circumstances. In par-
ticular, consider a field defined as
the quotient of two numbers, such
as the percentage of departmental
sales revenues contributed by a
particular salesperson. If the de-
partmental sales revenues are zero
(at the beginning of the sales peri-
od, for example), this number is
undefined. This case might be due
to bad design: The value is not en-
tirely functionally dependent on
cither the salesperson or the de-
partment. Instead, it is a value de-
rived from two other values, one
of which is functionally depen-
dent on salesperson and the other
on department. “Value undefined”
is one data entry version of a con-
ditional constraint.

Value not valid. Say the value
that a data entry operator enters
violates a constraint, such as a do-
main constraint. We might want to
record that such errors in the in-
formation gathering process have
occurred. “Value not valid” is an-
other data entry version of a con-
ditional constraint.

Value rejected. The system
may reject a value that the data en-
try operator knows is correct, and
imply that a change is required to
the domain definition or some
other constraint. In other words, it
is possible that the system will in-
form the data entry person that it
cannot accept a value that is known
to be correct, implying that the
data entry person has detected a
system design error. “Value reject-
ed” is another data entry version
of a conditional constraint, but
with the added attempt to convey
a belief that the constraint being
violated is incorrect.

Value not supplied. Sometimes
a value is not supplied during data
entry—which often occurs when
the data collection process is com-
bined with the data entry process.
It can also occur when the entered
data is collected from uncoopera-
tive users o1 unreliable sources.
For example, the U.S. Census sur-
vey contains certain optional ques-
tions that some residents of the
U.S. do not wish to answer. It is
also possible that the data entry
operator chooses not to enter a
particular field. Two cases must be

SRRRREERERRENERY

Motivations for
allowing nulls in
a database are
sometimes valid

treated when data is not supplied;
either the missing information is
the value of a property (and so a
way of handling conditional prop-
erties or conditional relationships),
or it is the value of an identifier
for the entity. In the latter case, we
have the problem of capturing in-
formation about an improperly
identified entity, possibly violat-
ing primary key discipline. Next
month, in Part IV, we will see that
this situation represents a database
design error, and will reduce the
problem of handling conditional
properties.

The importance of under-
standing different flavors of null
should not be underestimated. Not
only do they appear in new data-
bases through data entry, but we
often find each of them as types of
missing information in legacy data-
bases. The process of migrating to
a relational database requires iden-
tifying and handling each possible
case.

DEFAULTS: AN ALTERNATIVE?
It is unfortunate that most com-
mercial RDBMSs make it far easier
to specify the SQL NULL as a default
than to specify a meaningful de-
fault value for a column. As a re-
sult, SQL NULLs are sometimes used
as an improper substitute for de-
faults. Indeed, the relationship be-
tween defaults and nulls is so in-
tertwined that Date has suggested
a systematic use of defaults as an
alternative for all types of null,’ a
position with which I have some
sympathy.

Certainly a systematic use of
defaults would result in a far bet-
ter DBMS than the many-valued
logic alternative I criticized in Part
II. However, I do not believe sys-
tematic defaults can or should be
used in place of every possible oc-
currence of nulls. An alternative
and more restricted systematic use
of defaults will be among the pro-
posed solutions to nulls in Part IV.

SUMMARY

Ralph Waldo Emerson once said
(Journals, 1866) “If I cannot brag of
knowing something, then [brag
of not knowing it.” By accident
and by design, database practition-
ers often find themselves in this
unfortunate position.. The existence
of a null in a database is ultimately
a statement about what we do not
know, about something that is not
part of the defined (and hopefully
agreed upon) universe of discourse
for a particular database.

A database designer’s moti-
vations for incorporating or allow-
ing nulls in a database are some-
times valid, representing a valiant
attempt to deal with conditional
relationships, properties, opera-
tions, constraints, and information.
This conclusion, along with the
conclusion of Part II that many-
valued logic and, therefore, nulls
are not an appropriate solution to
the “missing information problem,”
leaves us in a dilemma. As a con-
clusion to this series, next month
in Part IV I will propose a set of
solutions to this dilemma. il

The author wounld like to thank Chris Date and
Hugh Darwen for their helpful comments and
criticisms. Also, apologies to Billy Preston
(again) and The Allman Brothers for the abuse
of their song titles.

REFERENCES

1. Olson, R. G. Meaning and Argument:
Elements of Logic, Harcourt, Brace, & World,
1969.

2. Date, C. J. “NOT is Not NOT!” in Re-
lational Database Writings 1985-1989, Ad-
dison-Wesley, 1990,

3. Date, C. J. with Hugh Darwen. “The
Default Values Approach to Missing Infor-
mation” in Relational Database Writings
1989-1991, Addison-Wesley, 1992,

David McGoveran is president of Alterna-
tive Technologies (Boulder Creek, Cali-
fornia), a relational database consulting
firm founded in 1976. He has authored
numerous technical articles and is also
the publisher of the “Database Product
Evaluation Report Series.”

FEBRUARY 1994
48

