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We present here a novel calculation based on an unconventional but actively 

developing physical theory [‘I; a reasonably complete overview of this theory has 

been published in this journalt2]. The theory asserts that to order cy the fine struc- 

ture constant used to describe the energy spectrum of the hydrogen atom should 

have the value l/137. We go on to predict on the same basis that the second order 

value in the same context is [l - &l/137 = l/137.0359 674...., close to the 

currently accepted value given 13] as “l/137.0359 895(61) [At Q2 = rnz. At Q2 of 

order rn& the value is approximately l/128.]“. Both the derivation and the calcu- 

lation will require corrections of order o3 and (m,/mp)2 when extended beyond the 

context of the hydrogen atom. Since most current theories do not contemplate the 

possibility of calculating (Y, although WeinbergL4’ has indicated that this should be 

possible in principle, we must justify our method before presenting the calculation. 

Conventional theories take the structure of relativistic quantum mechanics as 

-given. The two empirical constants c and fi are connected to the arbitrary his- 

terical standards of mass, length and time by various, hopefully self-consistent, 

means. A third fundamental constant such as the square of the electronic charge 
. . 

- or the electron, proton, Planck, . . . . mass has to be taken from experiment before 

theoretical “predictions” can be attempted. Often the resulting comparisons with 

experiment can remain very rough, until supplemented by a generous amount of 

additional empirical input and theoretical structure. For instance, the high dimen- 

sion Kaluza-Klein theories coupled to a large number of Yang-Mills fields, when 

compactified, in effect take the Planck mass [Ec/G]i as the third dimensional pa- 

rameter. In this context Weinberg c4) calculates the coupling constants of the fields, 

which are supposed to include the equivalent of cy, GF,~~, . . . . Numerical results are 

quantitatively inadequate for comparison with experiment. Further modifications 

of this type of theory, needed to close the gap, often have only a tenuous connec- 

tion to algorithmic precision or actual laboratory practice. Starting from one of 

the four “empirical” numbers mentioned above (i.e. e2, m,, mp, Mplanck) there is 
- 

n0 consensus on how to calculate the other three - a clear requirement for any 

fundamental physical theory that allows only empirical standards for mass, length 
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and time, or some equivalent like c, ti and mp to dictate the common units for 

the inter-comparison of experiments between laboratories. We have recently pro- 

vided a systematic discussion of how our theory can start from c, ti and the Planck 

masst51. 

Our theory differs in that we claim to be able to calculate a first approximation 

to the ratio of the Planck mass to the proton mass, the ratio of the proton mass to 

the electron mass, and the ratio of the square of the elementary electromagnetic 

charge to the product of the unit of action and the limiting velocity. Therefore 

we can connect our theory to experiment by taking any one of the four accepted 

values from experiment and calculating a first approximation for the other three. 

From then on our iterative improvement of the theory is, in principle, much the 

same as for any other fundamental theory, such as the currently popular “string 

theories”. 
,. -- 

- Although our methodology looks almost conventional when we describe it 

above, our practice is significantly different in several ways. In contrast to most. 
. . “elementary particle” theories, we do not take relativistic quantum mechanics for 

granted. Our “mathematics” relies on the ordering operator calculus “I. We ac- 

cept the principles of finiteness, discreteness, finite computability, absolute non- = - 

uniqueness, and require the formalism to be strictly [‘I constructive. The fact that 

-- - we are able to use our fundamental principles to construct (rather than postulate) 

the limiting velocity and discrete events, and then to derive the Lorentz transfor- 

mations and the non-commutativity of position’and velocity gives our theory more 

explanatory power than the conventional approach. We start from the current prac- 

tice of physics, construct an uninterpreted (but motivated) model that stands on its 

own feet as a piece of mathematics, and then construct rules of correspondence (7) 

which allow us to compare this structure and calculations made from it with current 

theoretical practice and experimental results. Anomalies, ambiguities and discrep- 
- 

ancies then call for iteration of the procedure starting anywhere in the chain and 

moving in either direction, keeping past experience in mind. 
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The theory that we are iteratively developing started in the 50’s, motivated 

in part by a search for a hierarchical structure that would give clues as to how 

the scale constants of physics and cosmology m ight be constructed. This research 

effort led to the discovery of the’combinatorial hierarchy[8’s1 by A.F. Parker-Rhodes 

in 1961. The hierarchy is constructed from  two recursively generated sequences: 

.ni+l = zni -_ 1 and m ;+l = rnf starting from  no = 2 = mo, which term inate at 

i=4 because the mapping (see below) connecting the second sequence to the first 

cannot be constructed beyond that term . This discovery supported no obvious 

“rule of correspondence” connecting the cumulative number of elements in play at 

the third (3 + 7 + 10 = 137) and fourth (137 + 2127 - 1 E 1.7 x 1038) levels as 

good approximations to the known scale constants 137 21 Zic/e2 and 1.7 x 1O38 2~ 

WG$ = [MPzancdmp12. 

The model is conveniently represented by ordered strings of the symbols 0 and 

- l-( bit-strings): 

- a(Sj = (..., bz, . . . . . )s; bz E  0,l; s E  1,2, . . . . S; 0, 1, . . . . S  E  ordinal integers (1) 
. . 

- 

which can combine by discrim ination (XOR) symbolized by “@ I”: 

-- - 

a $ b = (..., bf@*, . ..)s = b $ a; by@ = (bf - bf)2 

or concatenation symbolized by “II”: 

(2) 

a(Sa)llb(Sb) = (.... bi . . . . )s,ll(....bg...)s6 = (......, bE’lb, . . . . . )s,+s~ 

13$‘~ = bf, i E  1,2, . . . , sa; b;“” = b;, j E  1,2, . . . . sb, k = s, + j (3) 

We take as our model for generating these strings the class of algorithms called 
- 

program  universe[lo’lll . These pick two arbitrary strings from  a universe containing 

strings of length S, discrim inate them, and if the result is not the null string (bf = 0 
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for all s) adjoin it to the universe; else they concatenate an arbitrary bit, separately 

chosen for each string, to the growing end of each string. If we think of this bit- 

string universe as a block of strings of length S and height H, the second operation 

(called TICK) amounts to adjoining an arbitrary column (Bernoulli sequence) and 

hence S + S + 1. The first operation (called PICK) generates a string from the 

-extant content and adds it as a new horizontal row (H + H + 1). 

Finite sets of non-null bit-strings which cZose under discrimination are called 

discriminately closed subsets (dcss). For example, two discriminately independent 

bits-strings (i.e. a $ b # 0) g enerate 3 dcss: {a}, {b}, {a, b,a $ b}. The three 

member set closes under discrimination because any two members discriminate to 

the third. Similarly 3 discriminately independent bit-strings generate 7 dcss: 

:. ,. -- 

1: 

b,b@b); {b,c,b@c}; {c,a,c@a} (4) 

{a, b, c, a@ b, b@ c, c $a, a@ b $ c} 

Clearly, given j non-null discriminately independent strings one can form 2j - 1 

-- - dcss. If one starts with two discriminately independent bit-strings of length 2 [(Ol), 

(10) or (Ol),~ (11) or (ll), (lo)] and f arms the three dcss, these can be mapped 

by three non-singular 2 x 2 matrices which have them as their only eigenvectors 

and which are discriminately independent to provide three basis elements for a new 

level. This mapping can be repeated using 4 x 4 matrices with 7 = 23-l < 16 non- 

singular and discriminately independent exemplars, and once again using 16 x 16 

matrices because 127 = 27 - 1 < 256; however the mapping cannot be carried 

further because 256 x 256 matrices have only 2562 discriminately independent 

&eiplars and 2562 << 2127 - 1. This is still the simplest way to explain how the 

combinatorial hierarchy can be generated and why it terminates. 
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Although our program universe algorithm need not explicitly contain the ma- 

trix mapping proposed by Parker-Rhodes, the fact that the strings grow by concate- 

nation of bits at only one end and the property of discriminate closure explained 

above insures that we will automatically generate many different bit-string rep- 

resentations of the combinatorial hierarchy in the early parts of the strings. We 

-use these early parts of the string as labels for the rest of the string. We employ 

these labels to construct quantum numbers and the rest of the string to construct 

our discrete version of space-time, as we explain in more detail in Ref.2 and later 
WI work . 

Events are defined by the constraint that either three or four strings combine 

to the null string. If we take as our measure the number of l’s in a string of 

length S (the Hamming measure) this together with our definition of event insures 

that these measures for the three or four strings satisfy a triangle inequality and 

‘. 
-can be used to define a metric. For two independently generated measures in a 

locally flat discfete space (d-space), these combine in quadrature to a third measure 

c2 = cz2 + b2, but the value of c as a “square root” may not exist. However, we. 
. . 

- can always define symmetric factors c2 = (c’ + f)(c’ - f) = (c’)~ - f2 where f is a 

rational fraction less than c’ which has to be consistently assigned in context. 

Once we have constructed the label-content concatenation, we can interpret the 

situations where PICK leads to a non-null string (i.e. c = a $ b, or equivalently 
-- - a $ b $ c = 0) as the production (eg by pair annihilation or bremmstrahlung) or 

absorption of a single label which either initiates or terminates a propagation of 

the label that continues for (or ends after) some finite number of TICKS. This 

is a discrete model for a Feynman vertex. The completed process combining two 

such vertices models a 4-leg diagram a $ b $ c $ d = 0 which we call a 4-event. 

The choice of this criterion is not arbitrary. McGoveran (Ref 6, Theorem 13) has 

shown that any discrete space of D “homogeneous and isotropic” dimensions syn- 

chronized by a universal ordering operator can have no more than three indefinitely - 

, continuable dimensions; three separate out and the others “compactify” after a sur- 

prisingly small number of constructive operations. This theorem is also discussed 

6 



in Ref. 2. 

A tentative rule of correspondence between the last two cardinals of the com- 

binatorial hierarchy and a known result in relativistic quantum field theory was 

suggested by HPN[l”’ in 1973. HPN argued that Dyson’s calculation [lrl of the 

maximum number of terms in the renormalized QED perturbation theory series in 

.Q = e2/hc e l/137 which are meaningful (137, because the series with (Y + --cr 

diverges beyond that point) shows that the maximum number of charged parti- 

cle pairs which can be counted within their own compton wavelength is 137 II 

(2m~~)-~[e~/(h/2mc)]-~ = hc/e2. The same argument applied to gravitation 

shows that the maximum number of gravitating baryons of protonic mass which can 

be counted within their own compton wavelength is hc/Gmi = 1.7 x 1O38 E 2127. 

Thus the two largest combinatorial hierarchy integers can be interpreted as count- 

ing numbers of particles in an appropriate physical context; vlhy this should be so 

-remained a mystery until a full physical context had been worked out. 

- Once the bit-string representation of quantum events was connected to dis- 

crete quantum number conservation laws, relativistic 3-momentum conservation’ 
. . 

- and relativistic Bohr-Sommerfeld quantization, it became possible(2) to construct 

a rule of correspondence connecting the first three levels of the hierarchy to the 

first generation of the standard .model of quarks and leptons. The current rule is 

that the first level has two chiral neutrinos and an associated quantum (3 labels), 
-- - that the second level has electrons, positrons, gamma rays and the coulomb inter- 

action (7 labels), and that the third level has up and down quarks with associated 

gluons in a color-confined octet (16 x 8 - 1 = ‘127 labels). [Color confinement is 

proved in our context by the extension of McGoveran’s Theorem to label-content 

“space”.] In the absence of further information, the coulomb interaction will occur 

with a probability of l/137 in all events that must contain the first three lev- 

els. Corrections will occur when we must also consider less probable complexities 

bought in, for example, by the 2562 possibilities that occur in the mapping of - 
level 3 when four fermions engage directly in an event. These we associate with 

weak-electromagnetic unification and calculate a first approximation for the Fermi 
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“coupling constant” to be a~rni = 1/2562; our first approximation for the 

weak angle is .sin2tlWeak = a. The overall context in which the calculation we now 

describe is set is summarized in the Table of Results. 

In our bit-string model, as we have already explained, part of the string (the 

label) represents the quantum numbers generated by the combinatorial hierarchy 

-as discussed above and the remainder of the string (of content length n) can rep- 

resent a biased random walk between events in which the l’s represent Ic steps in 

one direction and the O’s represent n - Ic steps in the other. Generalizing from 

Stein[‘“’ we use a rule of correspondence which requires each step in any content 

string or strings allowed in context to be executed at the limiting velocity c and 

have length h/ mc; hence the velocity between events is /3c = [g - l]c. If we 

wish to model “constant velocity”, this restricts content strings of length nN to 

have kN l’s, defining the deBroglie wavelength periodicity N as the “positions” 

-where events co& (but need not) occur. Because the step-wise change in “po- 

sition” h/me implies a change in momentum mc, both of which can be reversed 

at the next step enclosing an area h in phase space, or more generally enclosing 
. . 

- an area nNh when we return to a cyclic starting point after nN steps, we have 

derived relativistic Bohr-Sommerfeld quantization from our model, including the 

zitterbewegung associated with the string mass specified by the system label. 

Most of this background is not directly invoked in the algebraic steps needed 

-- - to obtain our result. But we have found that, without such an explanation, most 

physicists cannot see why these algebraic steps lead to a physical and not just a 

mathematical result. It may be easier to follow our reasoning if one goes back 

to the stage in quantum mechanics when Bohr computed the relativistic formula 

for the energy levels of the hydrogen atom [I61 . Sommerfeld was able to extend 

this result[*‘] to compute, in agreement with experiment, the known fine structure 

splitting. Bohr had made use of the correspondence principle to tie his model 

to “classical orbits” at large space-time separations between electron and proton, 

bttwas well aware of the fact that these classical ideas did not apply to the 

low lying states. He was also well aware of the fact that his “circular orbits” in 
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such cases did not imply “flat atoms” but in fact described spherically symmetric 

systems in three-space - a realization that is all too often lost in elementary 

discussions of the “Bohr atom”. Because he could not rely on his classical space- 

time intuition, his calculation concentrated on the quantum rules that connect an 

abstract energy level model of the atom to the observed transition frequencies as 

interpreted from the wavelengths of the line spectrum. It was this concentration on 

observed frequencies rather than spatial models that, in the hands of Heisenberg, 

led to matrix mechanics. Our calculation is made in the same spirit, but employs 

our labeled bit-string construction rather than the correspondence principle to 

insert the quantum rules into the calculation. 

We consider a system composed of two masses, mp and m, - which we claim 

to have computed from first principles(5) in terms of FL, c and G - and identi- 

fied by their labels using our quantum number mapping onto the combinatorial 

i 
-hierarchy(2). In this framework, their mass ratio (to order cr3 and (m,l~~,)~) has 

also been computed using only tL, c and 137. However, to put us in a situation 

more analagous to that of Bohr, we can take mp and m, from experiment, and 

- . treat l/137 as a counting number representing the coulomb interaction; we rec- 

ognize that corrections of the order of the square of this number may become 

. important one we have to include degrees of freedom involving electron-positron 

pairs. We attribute the binding of m, to mp in the hydrogen atom to coulomb 

-- - events, i.e. only to those events which involve a specific one of the 137 labels at 

level 3 and hence occur with probability l/137; the changes due to other events 

average out (are indistinguishable in the absence of additional information). We 

can have any periodicity of the form 137j where j is any positive integer. So 

long as this is the only periodicity, we can write this restriction as 137j steps = 1 

coulomb event. Since the internal frequency 1/137j is generated independently 

from the zitterbewegung frequency which specifies the mass scale, the normaliza- 

tion condition combining the two must be in quadrature. We meet the bound state 

reqi%ement that the energy E be less than the system rest energy mepc2 ( where 

mep = memp/(me + mp) is used to take account of S-momentum conservation) by 
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requiring that (E/~c~)~[l + (ljl37N~)“l = 1. If we take e2/Rc = l/137, this is 

just the relativistic Bohr formula(r6) with NB the principle quantum number. 

Since most of our readers have never encountered this formula, and might 

have trouble chasing through the units in which it is expressed starting from the 

1915 paper, we derive it in a modern way c5) by treating the bound state as a 

~pole in the relativistic wave function - or S-matrix. The basic S-Matrix point of 

view associates a bound or resonant state of any two-particle system with a pole 

at invariant 4-momentum squared so in the two-particle momentum-space wave 

function $(s, so) whose residue defines the “coupling constant” f2. In the narrow 

width approximation this translates to 

dhso) = & (5) 

Assuming the state contains only two particles of mass ml, mp yields the normal- 

ization condition - 
00 

J 
d+#+,so)12 = 1 (6) 

. . 
- (ml+mzy 

which forces us, for dimensional reasons, to include some mass p in the definition 

of the residue if we wish (in analogy with e2/lic) to keep the coupling constant 

f2 dimensionless. By performing the integration we obtain a simple connection 

-- - between masses and coupling constants 

(f2p)2 = (ml + m2)2 - SO 

Note that the magnitude of f2 is not seriously restricted by this algebraic connec- 

tion until we have inserted more information. We assert that this starting point 

is non-perturbative and rests only on unitarity and relativistic quantum mechanics 

in a finite particle number space. If we take f2 = e2/fic = Q N l/137, take the 

free system mass equal to the reduced mass “ml + m2” + mep = m”,~~p (which - 
implies that so = (mep - cB,,hr)2) and use this also as the reference mass p, we 

obtain once again the relativistic Bohr formula. 
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The Sommerfeld model for-the hydrogen atom (and, for superficially different 

but profoundly similar reason$‘] the Dirac model as well) requires two independent 

periodicities. If we take our reference period j to be integer and the second period 

s to differ from an integer by some rational fraction A, there will be two minimum 

values st = 1 f A and other values of s will differ from one or the other of these 7 

values by integers: sn = n + so. This means that we can relate (“synchronize”) 

the fundamental period j to this second period in two different ways, namely to 

steps steps 
137’ (coulomb event) ’ 137so (coulomb event) = ’ ’ e = b+ 

or to 

steps steps 
137’ (coulomb event) - 137so (coulomb event) 

=l-e=b- 

where e is an event probability. Hence we can form 

(8) 

(9) 

,. -- 

- 2 a =j2 - si = (b+/137)(b-/137) = (1 - e2)/1372 (10) 

. . 
- Note that if we want a finite numerical value for a, we cannot simply take a square 

root, but must determine from context which of the symmetric factors [i.e. (1 - e) 

or (1 + e)] we should take (c.f. the discussion about factoring a quadratic above). 

With this understood, we write sn = n + dm. 

-- - We must now compute the probability e that j and s are mapped to the 

same label, using a single basis representation constructed within the combinatorial 

hierarchy. We can consider the quantity a as an event probability corresponding 

to an event A generated by a global ordering operator which ultimately generates 

the entire structure under consideration. Each of the two events j and s can be 

thought of as derived by sampling from the same population. That population 

consists of 127 strings defined at level three of the hierarchy. In order that j and s 

be independent, at least the last of the 127 strings generated in the construction of 
- 

s (thus completing level three for s) must not coincide with any string generated 

in the construction of j. There are 127 ways in which this can happen. 
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i., 

: 

There is an additional constraint. Prior to the completion of level three for s, we 

have available the rn:! = 16 possible strings constructed as a level two representation 

basis to map (i.e. represent) level three. One of these is the null string and cannot 

be used, so there are 15 possibilities from which the actual construction of the label 

for s that completes level 3 are drawn. The level can be completed just before or 

just after some j cycle is completed. So, employing the usual frequency theory of 

probability, the expectation e that j and s as constructed will be indistinguishable 

is e = l/30 x 127. 

- 

In accordance with the symmetric factors (1 - e) or (1 + e) the value e can 

either subtract from or add to the probability of a coulomb event. These two cases 

correspond to two different combinatorial paths by which the independently gener- 

ated sequences of events may close (the “relative phase” may be either positive or 

negative). However we require only the probability that all so events be generated 

-within one period of j, which is 1 - e. Hence the difference between j2 and s2 is to 

be computed as-the “square” of this “root”, j2 - .si = (1 - e)2. Thus, for a system 

dynamically bound by the coulomb interaction with two internal periodicities, as’ 
. . 

- in the Sommerfeld or Dirac models for the hydrogen atom, we conclude that the 

value of the fine structure constant to be used should be 

1 i37 -- 
a-1-& 

= 137.0359 674... 
-- - 

in comparison to the accepted empirical value 06~) 

$ N 137.0359 895(61) 

Now that we have the relationship between s,j and a, we consider a quantity 

H’ interpreted as the energy attribute expressed in dynamical variables at the 

137j value of the system containing two periods. We represent H’ in units of the 
- 

invariant system energy PC 2. The independent additional energy due to the shift 

of sn relative to j for a period can then be given as a fraction of this energy by 

z- - 
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(a/sn)H’, and can be added or subtracted, giving us the two factors (1 - (a/+)H’) 

and (1 + (a/+)H’). Th ese are to be multiplied just as we multiplied the factors 

of a above, giving the (elliptic) equation (H’)2/(p2c4) + (u~/s~)(H’)~/~~c~ = 1, 

Thanks to the previously derived expression of s = n + so this can be rearranged 

to give us the Sommerfeld formula(“) 

H'/pc2 = [l+ 
U2 

l- w 
(n + &?TP)” 

.- . 

Several corrections to our calculated value for (Y can be anticipated, depend- 

ing on context. As noted above, we have a first approximation for the Fermi 

constant and for the weak angle, each of which disagrees with currently accepted 

values by a few percent. Just how. weak-electromagnetic unification takes shape 

in our developing theory could lead to problems at this level of accuracy. More 

-immediately, the Sommerfeld formula uses the “system mass” which, naively, is 

fi = m,mp/(m,+ mP), and hence suggests that there may be corrections of order 

(n~/riz~)~. At th e 1 eve1 of accuracy of our calculation, these can be ignored in’ 
. . 

- hydrogen, but will be significant in muonium. In QED, these corrections depend 

on the sum of the squares of the two finite masses, which is consistent with our 

rule that requirestwo independent quantities to add in quadrature. If we cannot = - 

derive the appropriate correction, our theory could be in serious trouble. Another 

-- - point that bears watching is whether there is spin dependence at this level of ac- 

curacy. Clearly the calculation presented here cannot apply to positronium, or to 

the “Lamb shift”, but these effects go beyond order cr2 in conventional QED, and 

presumably for us as well. Our theory is frangible if we cannot meet these chal- 

lenges, just as QED was in the late 40’s. We ask the reader to consider whether the 

conceptual advantages and quantitative results our approach has already demon- 

strated provide sufficient incentive for engaging in the hard work needed to extend 

our theory to higher approximations and to the systematic calculation of other - 
chysically dimensionless parameters. 
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l crossing symmetry, CPT, spin and statistics 

Gravitation and Cosmology 
l the equivalence principle 
l electromagnetic and gravitational unification 
l the three traditional tests of general relativity 
l event horizon 
l zero-velocity frame for the cosmic background radiation 
l mass of the visible universe: (212i)2mp = 4.84 x 1O52 gm 
l fireball time: (2127)2tL/m,~2 = 3.5 million years 

-o-critical density: of RVi, = p/pc = 0.01175 [0.005 2 Rvi, 5 0.021 
ä dark matter e 12.7 times visible matter [lo??] 
l baryons per photon = 1/2564 = 2.328... x 10-l’ [2 x 10-lo?] 

Unified theory of elementary particles . . - ‘. 
l quantum numbers of the standard model for quarks and leptons 
with- confined quarks and exactly 3 weakly coupled generations 
l gravitation: fic/Gmi = [2127 + 1361 x [l - &] = 

1..70147...[1 - &] x 103* =i.6934... x 1O38 [1.6937(10) x 1O38] . . 
l weak-electromagnetic unification: 

-- - Gp;/hc = (1 - &)/25S2fi = 1.02 758... x 1O-5 [1.02 684(2) x 10-5]; 
sin20Weak = 0.25(1 - A)” = 0.2267... [0.229(4)] 
M& = m+,hG Fsin20W = (37.3 Gevfc2sin 8~)~; Mzcos 0~ = Mw 

l the hydrogen atom: (E/~c~)~[l + (1/137N~)~] = 1 
l the Sommerfeld formula: (E/~c~)~[l + u2/(n + &m)2] = 1 
l the fine structure constant: $ = r-l371 

joxlz? 
= 137.0359 674...[137.0359 895(61)] 

. mph = T&yjJ$ - - 1836.15 1497... [1836.15 2701(37)] 

l r&m, = 275[1 - &] =273.1292... [273.12 63(76)] 
l m,o/me = 274[1 - &I= 264.2 1428.. [264.1 
~(?$vrn,o)~ = (2mp)2 - m;, = (13.86811m,o)2 

[ ( )] = empirical value (error) or range 

160(76)] 
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