
THE THIRD MANIFESTO :

third1 html[5/14/2014 11:16:22 PM]

THE THIRD MANIFESTO:

FOUNDATION FOR

OBJECT / RELATIONAL DATABASES

by

Hugh Darwen and C. J. Date

Note: A book with the same title by the same authors is due to be published by Addison-Wesley in mid 1998. The article
 that follows is basically a late draft of one chapter from that book, though it has been edited somewhat to make it more
 self-contained. A brief description of that book can be found at the end of this article. For more information, contact
 either of the authors (contact information is also given at the end of the article).

ABSTRACT

The Third Manifesto [3] is a detailed and rigorous proposal for the future of data and database management systems.
 The present article consists of an informal discussion of certain of the key technical ideas underlying the Manifesto,
 including in particular the idea that domains in the relational world and object classes in the object world are the same
 thing.

Copyright ã 1998 Hugh Darwen and C. J. Date

THE THIRD MANIFESTO :

Go back t o the t op Prev ious page Next page

INTRODUCTION

There is much cmTent interest in the database community in the possibility of integrating objects and relations. However
(and despite the fact that several vendors have ah eady announced-in some cases, even released-"object/relational"
products), there is still some confusion over the question of the right way to perfo1m that integration. Since part of the
pmpose of The Third Manifesto [3] is to answer this ve1y question, the idea of bringing the Manifesto to the attention of
a wider audience than hitherto seems timely.

The Manifesto is meant as a foundation for the future of data and database management systems (DBMSs) . Because of
our twin aims in writing it of comprehensiveness and brevity, however, it is-unfortunately but probably inevitably-

rather terse and not ve1y easy to read; hence this introducto1y aiiicle (which might be characterized as "the view from
20,000 feet"). Our aim is to present some of the key technical ideas underlying the Manifesto in an info1mal manner,
thereby paving the way for a proper understanding of the Manifesto itself. In paiiiculai-, as aheady indicated, we would
like to explain what we believe is the right way to integrate objects and relations. More precisely, we want to address
the following question:

What concept in the relational world is the counte1part to the concept "object class" in the object world?

There ai·e two equations that can be proposed as answers to this question:

1. domain= object class

2. relation= object class*

In what follows, we will argue strongly that the first of these equations is right and the second is wrong.

*More con ectly, re/var = object class. See the section "Relations vs . Relvars," later.

Copyright a1998 Hugh Darwen and C. J. Date Page 1

Go back t o t he t op Previ ous page Next p a ge

WHAT PROBLEM ARE WE TRYING TO SOLVE?

Databases of the future will contain much more sophisticated kinds of data than cmTent commercial ones typically do.
For example, we might imagine a biological database that includes a BIRD relation like that shown in Fig. 1. Thus,
what we want to do is extend-dramatically-the range of possible kinds of data that we can keep in our databases. Of
course, we want to be able to manipulate that data, too; for example, we might want to find all birds whose migration
route includes Italy:

thit·dl html[S/ 14/201411 :16:22 PM]

THE THIRD MANIFESTO :

SELECT NAME, DESCR, VIDEO
FROM BIRD
WHERE INCLUDES (MIGR, COUNTRY ('Italy')) ;

Note: We use SQL here for familiarity, though in fact the Manifesto expressly proscribes it (see the next section).

3JRD IW.O: ll'.BSCR PIC \'10['0 SOJl"G

.Rob.in
O~prcy

\lhara NA.MI jg: .,, .bird n~na:
a nd DliSCK .ie a d~~e~l.P~lon or th~t bll"<I
and PIC ia a picture ot tbe bird
aria VIDEO 1a a rovia or th" bird
and SOXQ i~ the bird'~ ~oag
:ind Mtc:n isz th.ct bird• ~ n i 9ration route

T.i'J. l; 1'be IHkl) ~elt>ti<>n

l!I GR

(text)
(tcLxt)
(pboto)
{vl4<20)
(tlllcl.10),,,

Thus, the question becomes: How can we suppo1i new kinds of data within the relational framework? Note that we do
take it as axiomatic that we want to stay in the relational framework!-it would be unthinkable to walk away from nearly
30 years of solid relational R&D. We mustn't throw the baby out with the bathwater.

Copyright a 1998 Hugh Darwen and C. J. Date Page 2

Go ba c k t o t he t op Previ ous page Next p a ge

WHY THE THIRD MANIFESTO?

Before going any fmi her, we should explain that "third" in our title. In fact, the Manifesto is the third in a series (of a
kind). Its two predecessors are:

1. The Object-Oriented Database System Manifesto [1]

2. The Third Generation Database System Manifesto [7]

Like our own Manifesto, each of these documents offers a proposed basis for future DBMSs. However:

1. The first essentially ignores the relational model! In our opinion, this flaw is more than enough to rnle it out
immediately as a serious contender.

2. The second does agree that the relational model must not be ignored, but assumes that SQL (with all its faults)
is an adequate realization of that model and hence an adequate foundation for the future. By contrast, we feel
strongly that any attempt to move fo1ward, if it's to stand the test of time, must reject SQL unequivocally . Our
reasons for taking this position are many and varied, far too much so for us to spell them out in detail here; in any
case, we've described them in depth in other places (see, e.g., references [2] and [4]), and readers are refen ed to
those publications for the specifics.

A major thesis of The Third Manifesto is thus that we must get away from SQL and back to our relational roots. Of

thit·dl html[S/ 14/201411 :16:22 PM]

THE THIRD MANIFESTO :

course, we do realize that SQL databases and applications are going to be with us for a ve1y long time-to think
othe1wise would be quite unrealistic. So we do have to pay some attention to the question of what to do about today's
SQL legacy, and The Third Manifesto does include some proposals in this regard. Further details are beyond the scope
of this aiticle, however.

Without fmt her preamble, let's take a look at some of the key technical aspects of our proposal.

RELATIONS vs. RELVARS

The first thing we have to do is clear up a confusion that goes back nearly 30 years. Consider the bill-of-materials
relation shown in Fig. 2. As the figure indicates, eve1y relation has two paits, a heading and a body ,- the heading is a set
of column-name/domain-name pairs, the body is a set of rows that confo1m to that heading. For the relation in Fig. 2:

• The column names are MAJOR_P#, MINOR_P#, and QTY (where P# means part number);
• The coITesponding domain names ai·e P#, P#, and QTY, respectively;
• Each row includes a MAJOR_P# value (from the P# domain), a MINOR_P# value (also from the P# domain), and

a QTY value (from the QTY domain).

Info1mally, of course, we often ignore the domain-name components of the heading (as indeed we did in Fig. I).

Copyright a 1998 Hugh Darwen and C. J. Date Page 3

Go ba c k t o t he t op Previ ous page Next p a ge

JO.TOR_PI I Pi llUIOR_U J Pl QTY I <m

Pl rn 2
Pl P l 4
P2 p~ l
P:a P4 ~

i'3 P!> 9
1'4 PS e
p~ P<S 3

Pi.q. 2• A bill-o~-'ll:ltcrial~ rel8tion

Now, there's a ve1y impo1tant (though perhaps unusual) way of thinking about relations, and that's as follows. Given a
relation R, the heading of R denotes a ce1tain predicate (or tmth- valued fmiction), and each row in the body of R
denotes a certain true proposition, obtained from that predicate by substituting certain domain values for that
predicate's parameters ("instantiating the predicate") . In the case of the bill-of-materials example, the predicate is

part MAJOR_P# contains QTY of part MINOR_P#

(the three pai·ameters are MAJOR_P#, QTY, and MINOR_P#, coITesponding of course to the three columns of the
relation), and the hue propositions ai·e

part PI contains 2 of part P2

(obtained by substituting the domain values P l , 2, and P2);

thit·dl html[S/ 14/201411 :16:22 PM]

THE THIRD MANIFESTO :

part PI contains 4 of part P3

(obtained by substituting the domain values Pl , 4, and P3); and so on. In a nutshell:

• Domains comprise the things we can talk about;
• Relations comprise the trnths we utter about those things.

It follows that:

• First, domains and relations are both essential (without domains, there's nothing we can talk about; without
relations, there's nothing we can say).

• Second, they aren't the same thing (beware anyone who fries to tell you othe1wise!).

Now we can get back to the main theme of the present section. Historically, there's been much confusion between
relations per se (i.e. , relation values) and relation variables. Suppose we say in some programming language:

DECLARE N INTEGER ...

N here isn't an integer per se, it's an integer variable whose values are integers per se-different integers at different
times. Likewise, if we say in SQL:

CREATE TABLE T ...

R here isn't a relation (or table) per se, it's a relation variable whose values are relations per se-different relations at
different times. And when we "update R" (e.g. , by "inse1iing a new row"), what we're really doing is replacing the old
relation value of R en bloc by an entirely new relation value. Of course, it's trne that the old value and the new value are
somewhat similar-the new one just has one more row than the old one-but conceptually they are different values.

Copyright a 1998 Hugh Darwen and C. J. Date Page 4

Go back t o t he t op Previ ous page Next page

Now, the trouble is that, ve1y often, when people talk about relations, they really mean relation variables, not relations
per se. This distinction-or, rather, the fact that this distinction is usually not clearly made-has been a rich source of
confusion in the past. For example, the overall value of a given relation, like the overall value of a given domain,
doesn't change over time, whereas of course the value of a relation variable ce1iainly does. Despite this obvious
difference, some people-we suppress the names to protect the guilty-have proposed that domains and relations
(meaning relation variables) are really the same kind of thing! See the section "Relvars vs. Object Classes," later.

In The Third Manifesto, therefore, we've tried ve1y hard to be clear on this point (and the same goes for the rest of the
present aiiicle) . Specifically, we've introduced the te1m relvar as a convenient sho1ihand for relation variable, and
we've taken care to phrase our remarks in te1ms of relvars, not relations, when it's really relvars that we mean.

DOMAINS vs. OBJECT CLASSES

It's an unfo1iunate fact that most people have only a rather weak understanding of what domains ai·e all about; typically
they perceive them as just conceptual pools of values, from which columns in relations draw their actual values (to the
extent they think about the concept at all, that is). This perception is accurate so far as it goes, but it doesn't go far
enough. The fact is, a domain is really nothing more nor less than a data type-possibly a simple system-defined data
type like INTEGER or CHAR, more generally a user-defined data type like P# or QTY in the bill-of-materials example.

thit·dl html[S/ 14/201411 :16:22 PM]

THE THIRD MANIFESTO :

Now, it's important to understand that the data type concept includes the associated concept of the operators that can
legally be applied to values of the type in question (values of that type can be operated upon solely by means of the
operators defined for that type). For example, in the case of the system-defined INTEGER domain (or type-we use the
te1ms interchangeably):

• The system defines operators"=", "<", and so on, for comparing two integers;
• It also defines operators"+", "*", and so on, for perfo1ming arithmetic on integers;
• It does not define operators "II", SUBSTRING, and so on, for perfo1ming string operations on integers (in other

words, string operations on integers aren't supported) .

Likewise, if we had a system that supported domains properly (but most of today's systems don't), then we would be
able to define our own domains-say the pa1t number domain P#. And we would probably define operators"=", "<", and
so on, for comparing two pait numbers. However, we would probably not define operators "+", "*", and so on, which
would mean that arithmetic on pait numbers would not be suppo1ted.

Copyright a 1998 Hugh Darwen and C. J. Date Page 5

Go ba c k t o t he t op Previ ous page Next p a ge

Observe, therefore, that we distinguish ve1y cai·efully between a data type per se and the representation or encoding of
values of that type inside the system. For example, pait numbers might be represented internally as chai·acter strings,
but it doesn't follow that we can perfo1m string operations on pait numbers; we can perfo1m such operations only if
appropriate operators have been defined for the type. And (in general) the operators we define for a given domain will
depend on that domain's intended meaning, not on the way values from that domain happen to be represented or
encoded inside the system.

By now you might have realized that what we've been talking about is what's known in programming language circles
as strong typing. Different writers have slightly different definitions for this te1m; as we use it, however, it means,
among other things, that (a) eve1ything has a type, and (b) whenever we tty to perfo1m an operation, the system checks
that the operands ai·e of the right type for the operation in question. And note cai·efully that-as ak eady indicated-it's not
just comparison operations that we're talking about here (despite the emphasis on compai·isons in much of the database
literature). E.g., suppose we're given the well-known suppliers-and-paits database, with relvai·s S (suppliers), P (paits),
and SP (shipments), and consider the following expressions:

1. P.WEIGHT + SP.QTY /* pait weight plus shipment quantity*/

2. P.WEIGHT * SP.QTY /* pa1t weight times shipment quantity*/

The first of these expressions makes no sense, and the DBMS should therefore reject it. The second, on the other hand,
does make sense-it denotes the total weight for all paits involved in the shipment. So the operators we would define for
weights and quantities would presumably include"*" but not"+".

Observe now that so far we've said nothing at all about the nature of the values that can belong to a domain. In fact,
those values can be anything at all! We tend to think of them as being ve1y simple (numbers, strings, and so forth), but
there's absolutely nothing in the relational model that requires them to be limited to such simple fo1ms. Thus, we can
have domains of sound recordings, domains of maps, domains of videos, domains of engineering drawings, domains of
legal documents, domains of geometi·ic objects (and so on, and so on). The only requirement is that (to say it one more
time) the values in the domain must be manipulable solely by means of the operators defined for the domain in

thit·dl html[S/ 14/201411 :16:22 PM]

THE THIRD MANIFESTO :

question.

The foregoing message is so impo1iant that we state it again in different words:

THE QUESTION AS TO WHAT DATA TYPES ARE SUPPORTED
IS ORTHOGONAL TO THE QUESTION OF SUPPORT FOR THE
RELATIONAL MODEL

To sum up, therefore: What we're saying is that, in the relational world, a domain is a data type, probably user-defined,
of arbitraiy internal complexity, whose values ai·e manipulable solely by means of the operators defined for the type in
question. Now, if we tum to the object-oriented (00) world, we find that what is arguably the most fundamental 00
concept of all, the object class, is a data type, probably user-defined, of arbitra1y internal complexity, whose values ai·e
manipulable solely by means of the operators defined for the type in question ... In other words, domains and object
classes ai·e the same thing! Thus, we have here the key to integrating the two technologies-and, of course, this position
is exactly what we espouse in The Third Manifesto. Indeed, we believe that a relational system that suppo1ied domains
properly would be able to deal with all of those "problem" kinds of data that (it's often claimed) 00 systems can handle
and relational systems cannot: time-series data, biological data, financial data, engineering design data, office
automation data, and so on. Accordingly, we also believe that a tme "object/relational" system is nothing more than a
hue relational system -- which is to say, a system that suppo1is the Relational Model, with all that that entails.

Copyright a 1998 Hugh Darwen and C. J. Date Page 6

Go ba c k t o t he t op Previ ous page Next p a ge

RELVARS vs. OBJECT CLASSES

In the previous section we equated object classes and domains. Many people, however, equate object classes and re/vars
instead (see reference [6] for an example). We now ai·gue that this latter equation is a serious mistake. Indeed, the
Manifesto includes a categorical statement to the effect that re/vars are not domains.

Consider the following example. First, here's pa1i of a simple object class definition, expressed in a hypothetical 00
language (the keyword PUBLIC is meant to indicate that the specified items ai·e "public instance vai·iables"):

CREATE OBJECT CLASS EMP
PUBLIC (EMP# CHAR(5),

ENAME CHAR(20),
SAL NUMERIC,
HOBBY CHAR(20),
WORKS _FOR CHAR(20)) ... ;

And here's paii of a simple relational-or at least SQL-table (relvar) definition:

CREATE TABLE EMP

thit·dl html[S/ 14/201411 :16:22 PM]

(EMP# CHAR(5),
ENAME CHAR(20),
SAL NUMERIC,
HOBBY CHAR(20),
WORKS _FOR CHAR(20)) ... ;

THE THIRD MANIFESTO :

It's ve1y tempting to equate these two definitions!-which is in effect what ce1iain systems (both prototypes and
commercial products) have ak eady done. So let's take a closer look at this equation. More precisely, let's take the
CREATE TABLE just shown, and let's consider a series of possible extensions that (some people would argue)
make it more "00"-like.

First, we allow column values to be tup les from some other relvar ("tuple" here being just another word for row,
loosely speaking). In the example, we might replace the original CREATE TABLE by the following collection of
definitions:

CREATE TABLE EMP

(EMP# CHAR(5),
ENAME CHAR(20),
SAL NUMERIC,
HOBBY ACTIVITY,
WORKS_FORCOMPANY) ;

CREATE TABLE ACTIVITY

(NAME CHAR(20),
TEAM INTEGER) ;

CREATE TABLE COMP ANY

(NAME CHAR(20),
LOCATION CITYSTATE) ;

CREATE TABLE CITYSTATE>

(CITY CHAR(20),
STA TE CHAR(2)) ;

Copyright a 1998 Hugh Darwen and C. J. Date Page 7

Go back t o t he t op Previ ous page Next page

Fig. 3 shows the stmcture of relvar EMP at this point.

D<P

DCPf I N MUS :>Al. ltOllllY Wpl<> llORB:S _ FOR eitpl D

[iWIB]ySAM] tlMff: t.OCATIOll t upla

I CI'l''l I S VU£

I

!I' i q . J : ColUllJU> ,;ont.~in.iM (i><>1.nt9t'lll ~o] J'O"" - d apr •u:at ad

Exp lanation: Column HOBBY in relvar EMP is declared to be of type ACTIVITY. ACTIVITY in tum is a relvar of two

thit·dl html[S/ 14/201411:16:22 PM]

THE THIRD MANIFESTO :

columns, NAME and TEAM, where TEAM gives the number of players in the coITesponding team-for instance, a
possible "activity" might be (Soccer, 11) . Each HOBBY value is thus actually a pair of values, a NAME value and a
TEAM value (more precisely, it's a pair of values that cmTently appear as a row in relvar ACTIVITY). Note that we've
ah eady violated the dictum that relvars aren't domains!

Similarly, column WORKS_FOR in relvar EMP is declared to be of type COMPANY, and COMPANY is also a relvar
of two columns, one of which is defined to be of type CITYSTATE, which is another two-column relvar, and so on. In
other words, relvars ACTIVITY, COMPANY, and CITYSTATE are all considered to be types as well as relvars (as is
relvar EMP itself, of course).

This first extension is thus roughly analogous to allowing objects to contain other objects, thereby suppo1iing the
concept sometimes known as a containment hierarchy .

Note: As an aside, we remark that we have characterized this first extension as "columns containing rows" because that
is the way advocates of the "relvar = class" equation themselves characterize it. It would be more accurate, however, to
characterize it as "columns containing pointers to rows" -- a point that we will be examining in a few moments. (In Fig.
3, therefore, we should really replace each of the three appearances of the te1m row by the teim pointer to row.)
Analogous remarks apply to the second extension also.

That second extension, then, is to add relation-valued columns. E.g. , suppose employees can have an arbitraiy number
of hobbies, instead of just one (refer to Fig. 4):

Copyright a 1998 Hugh Darwen and C. J. Date Page 8

Go ba c k t o t he t op Previ ous page Next p a ge

CREATE TABLE EMP

(EMP# CHAR(5),
ENAME CHAR(20),
SAL NUMERIC,
HOBBIES SET OF (ACTIVITY),
WORKS_FORCOMPANY) ;

1ml'

RMPI RllAll:R 811.L KOBBI?:S rc.L.,tJo!I

rn .
.

I .. I .. I

WO:RllB_ IOil tuple

:KAM!: LOC'J<TlOJI t<Jple

I CIT'l I ST/\1'JS I

Explanation: The HOBBIES value within any given row ofrelvai· EMP is now (conceptually) a set of zero or more
(NAME, TEAM) pairs-i.e., rows-from the ACTIVITY relvai·. This second extension is thus roughly analogous to

thit·dl html[S/ 14/201411 :16:22 PM]

THE THIRD MANIFESTO :

allowing objects to contain "aggregate" objects (a more complex version of the containment hierarchy).

The third extension is to pennit relvars to have associated methods (i.e. , operators) . E.g.:

CREATE TABLE EMP

(EMP# CHAR(5),
ENAME CHAR(20),
SAL NUMERIC,
HOBBIES SET OF (ACTIVITY),
WORKS _FOR COMP ANY)

METHOD RETIREMENT_BENEFITS ():NUMERIC;

Explanation: RETIREMENT_ BENEFITS is a method that talces a given EMP instance as its argument and produces a
result of type NUMERIC. The code that implements the method is written in a language such as C.

The final extension is to permit the definition of subclasses. E.g. (refer to Fig. 5):

CREATE TABLE PERSON

(SS# CHAR(9),
BIRTHDATE DATE,
ADDRESS CHAR(50)) ;

Copyright a 1998 Hugh Darwen and C. J. Date Page 9

Go back t o t he t op Previ ous page

CREATE TABLE EMP

AS SUBCLASS OF PERSON
(EMP# CHAR(5),
ENAME CHAR(20),
SAL NUMERIC,
HOBBIES SET OF (ACTIVITY),
WORKS _FOR COMP ANY)

Next page

METHOD RETIREMENT_BENEFITS ():NUMERIC;

thit·dl html[S/ 14/201411 :16:22 PM]

THE THIRD MANIFESTO :

..

Pll.R50tl

I ss, I lll R'lflDA'Ml I Al>l>RB$$ I
Bill' I

•
EMP# E>IAllJ: SAL UOOOIES n1latlon llOIU<s_roR tuple

rn l<M:l LOCl\T l<>.W l:upl e

. . I CITY I STAT!: I
I .. ' -- I

Explanation: EMP now has three additional columns (SS#, BIRTHDATE, ADDRESS) inherited from PERSON. If
PERSON had any methods, it would inherit those too.

Along with the definitional extensions sketched above, numerous manipulative extensions are required too, of course
for instance:

• Path expressions-e.g., EMP.WORKS_FOR.LOCATION.STATE (and note that such expressions can return
scalars or rows or relations, in general; note further that in the latter two cases the components of those rows or
relations might themselves be rows or relations in tum, and so on)

• Row and relation literals (possibly nested)-e.g.,

('EOOl ', 'Smith', $50000,

{ ('Soccer', 11), ('Bridge', 4) } ,

('IBM', ('San Jose', 'CA')))

• Relational comparison operators-e.g., SUBSET, SUBSETEQ, and so on
• Operations for traversing the class hierarchy
• The ability to invoke methods within expressions-e.g. , in WHERE clauses
• The ability to access individual components within column values that happen to be rows or relations

Copyright a 1998 Hugh Darwen and C. J. Date Page 10

Go back t o t he t op Previ ous page Next page

So much for a quick overview of how the "relvar = class" equation is realized in practice. What's wrong with it?

Well, first of all, a relvar is a variable and a class is a type; so how can they possibly be the same thing? (We showed in
the section "Relations vs. Relvars" that relations and domains aren't the same thing; now we see that relvars and
domains aren't the same thing either.)

The foregoing argument should be logically sufficient to stop the "relvar = class" idea dead in its tracks. However, there
is more that can usefully be said on the subject, so let us agree to suspend disbelief a little longer ... Here are some more
points to consider:

• The equation "relvar =class" implies that "objects" are rows, and the coITesponding (public) "instance variables"

thit·dl html[S/ 14/201411 :16:22 PM]

THE THIRD MANIFESTO :

are columns. It follows that, whereas a pure 00 class has methods and no public instance variables, a relvar
"class" has public instance variables and only optionally has methods. So, again, how can the two possibly be the
same?

• There's a major difference in kind between the column definitions (e.g.) SAL NUMERIC and WORKS_FOR
COMPANY. NUMERIC is a hue data type (equivalently, a hue-albeit primitive-domain); it places a time

independent consti-aint on the values that can appear in column SAL. By conh'ast, COMPANY is not a hue data
type; the consh·aint it places on the values that can appear in column WORKS _FOR is time-dependent (it
depends, obviously, on the cunent value ofrelvar COMPANY). In fact, as pointed out earlier, the relvar vs.
domain distinction has been muddied.

• As we saw, row "objects" can contain other such "objects"; e.g. , EMP "objects" (apparently) contain COMPANY
"objects." But they don't! -not really; instead, they contain pointers (object IDs, to use the 00 te1m) to those
"contained" objects, and users must understand this point clearly. E.g. , suppose the user updates one paiiicular
COMPANY row in some way (refer back to Fig. 3). Then that update will immediately be visible in all EMP
rows that con espond to that COMPANY row.

It follows that we're not really talking about the relational model any more. The fundamental data object
isn't a relation containing values, it's a "relation" (actually not a proper relation at all) containing values and
pointers.

• Suppose we define view V to be the projection of EMP over (say) just ENAME. Vis a relvar too, of course (a
derived one, whereas EMP is a base relvar). Thus, if "relvar = class" is a conect equation, V is also a class. What
class is it? Also, classes have methods; what methods apply to V?

Well, "class" EMP had just one method, RETIREMENT_BENEFITS, and that one clearly doesn't apply to
V. In fact, it hardly seems reasonable that any methods that applied to "class" EMP would apply to V-and
there certainly aren't any others. So it looks as if (in general) no methods at all apply to the result of a
projection; i.e., the result, whatever it is, isn't really a class at all. (We might say it's a class, but that doesn't
make it one!-it will have public instance variables and no methods, whereas we've akeady observed that a
hue class has methods and no public instance variables.)

Copyright a 1998 Hugh Darwen and C. J. Date Page 11

Go ba c k t o t he t op Previ ous page Next p a ge

In fact, it's clear that when people equate relvars and classes, it's specifically base relvars they're refening
to-they're forgetting about the derived ones. (Ce1iainly the pointers discussed above point to rows in base
relvai·s, not derived ones.) As we've argued elsewhere [5], to distinguish base and derived relvai·s in this
way is a mistake of the highest order, because the question as to which relvars are base and which derived
is, to a ve1y large degree, arbiti-aiy. For fuiiher discussion of this impo1iant issue, see that same paper [5].

• Following on from the previous point: Suppose we have a relvai· R and we project it over all of its columns. In a
typical relational language, the syntax for such a projection is simply R. So the expression "R" is now ambiguous!
If we think of it as refening to relvai· R, then it's a class, with methods. If we think of it as refening to the
projection of relvar R over all of its columns, then it's not a class and it has no methods. How do we tell the
difference?

• Finally, what domains are supported? Those who espouse the "relvai· = class" equation never seem to have much
to say about domains, presumably because they cannot see how domains fit into their overall scheme. And yet (as
we saw in the section "Relations vs. Relvars" eai·lier) domains ai·e essential.

thit·dl html[S/ 14/201411 :16:22 PM]

THE THIRD MANIFESTO :

A NOTE ON INHERITANCE

You might have noticed that we did briefly mention the possibility of inheritance in the previous section but not in the
earlier section "Domains vs. Object Classes." And you might therefore have concluded that suppo1i for inheritance does
constitute at least one point in favor of the "relvar = class" equation. Not so, however; we do indeed want to include
inheritance as part of our "domain= class" approach, and thus (e.g.) be able to define domain CIRCLE as a
"subdomain" of "superdomain" ELLIPSE. The problem is, however, there doesn't seem to be a clearly defined and
generally agreed model of inheritance at the time of writing. As a consequence, The Third Manifesto includes
conditional suppo1i for inheritance, along the lines of "if inheritance is suppo1ied, then it must be in accordance with
some well defined and commonly agreed model." We do also offer some detailed proposals toward the definition of
such a model.

CONCLUDING REMARKS

We have discussed the question of integrating relational and object-oriented (00) database concepts. In our opinion,
00 contains exactly one unquestionably good idea: user-defined data types (which includes user-defined operators) . It
also contains one probably good idea: type inheritance (though the jmy is still out on this one, to some extent) . A key
technical insight underlying The Third Manifesto is that these two ideas are complete~y orthogonal to the relational
model. In other words, the relational model needs no extension, no correction, no subsumption-and, above all, no
perversion I-in order for it to accommodate these 01i hogonal ideas.

To sum up, therefore: What we need is simply for the vendors to give us true relational DBMSs (and note that "tm e
relational DBMSs" does not mean SQL systems) that include proper domain support. Indeed, an argument can be made
that the whole reason 00 systems (as opposed to "O/R" systems) look attractive is precisely the failure on the paii of
the SQL vendors to suppo1i the relational model adequately. But this fact shouldn't be seen as an argument for
abandoning the relational model entirely (or at all!).

ACKNOWLEDGMENTS

This a1iicle is an updated version of "Introducing The Third Manifesto" by Hugh Daiwen and C. J. Date, which
appeai·ed in Database Programming & Design 8, No. 1 (Januaiy 1995); it appeai·s here by permission of Miller
Freeman Inc. We would also like to thank the many people who have reviewed drafts of The Third Manifesto and
offered constmctive criticism and helpful comments on those drafts.

Copyright a 1998 Hugh Darwen and C. J. Date Page 12

Go ba c k t o t he t op Previ ous page Next p a ge

REFERENCES

1. Malcolm Atkinson et al. "The Object-Oriented Database System Manifesto." Proc. First International
Conference on Deductive and Object-Oriented Databases, Kyoto, Japan (1989). New York, N.Y.: Elsevier
Science (1990).

2. Hugh Daiwen. "Adventures in Relationland." In C. J. Date and Hugh Daiwen, Relational Database Writings
1985-1989. Reading, Mass.: Addison-Wesley (1990).

3. Hugh Daiwen and C. J. Date. "The Third Manifesto." ACM SJGMOD Record 24, No. 1 (Mai·ch 1995). Version
Two of this document is due to be published in book fo1m by Addison-Wesley in 1998.

thit·dl html[S/ 14/201411 :16:22 PM]

THE THIRD MANIFESTO :

4. C. J. Date. An Introduction to Database Systems (6th edition). Reading, Mass.: Addison- Wesley (1995).

5. C. J. Date. "Objects and Relations: Forty-Seven Points of Light." Data Base Newsletter 23, No. 5
(September/October 1995).

6. Won Kim. "On Many ing Relations and Objects: Relation-Centric and Object-Centric Perspectives." Data Base
Newsletter 22, No. 6 (November/December 1994).

7. Michael Stonebraker et al. "Third Generation Database System Manifesto." ACM SIGMOD Record 19, No. 3
(September 1990).

THE THIRD MANIFES TO: A NOTE REGARDING THE BOOK-LENGTH VERSION

The book's full title is the same as that of the cunent aiticle -- viz., The Third Manifesto: Foundation for
Object/Relational Databases. And there's a subtitle too: a detailed study of the impact of objects and type theory on the
relational model of data, including a comprehensive proposal for type inheritance. As noted in the abstract to the
present aiticle, The Third Manifesto is a detailed and rigorous proposal for the future of data and database management
systems; it consists of a precise, fonnal definition of an abstract model of data, to be considered as a blueprint for the
design of a DBMS and a database language. In paiticulai-, it provides a rock-solid foundation for integrating relational
and object technologies, a foundation conspicuously lacking in cmTent approaches to such integration.

The proposed foundation represents an evolutionaiy step, not a revolutionaiy one. It builds on Codd's relational model
of data and on the research that sprang from Codd's work. Most notably, it incorporates a precise and comprehensive
specification for a method of defining data types, including a comprehensive model of type inheritance, to address a
lack that has been observed by many authorities; thus, it also builds on research in the field of object orientation. With a
sound basis in both camps of the object/relational divide, therefore, the Manifesto is offered as a fnm foundation for
hue object/relational DBMSs.

Copyright a 1998 Hugh Darwen and C. J. Date Page 13

Go back t o t he t op Previ ous page Next page

The book is airnnged into four pa1ts and a set of appendixes:

I. Preliminaries: Background and overview; objects and relations

II. Formal Specifications: The Manifesto proper; a new relational algebra; and a language called Tutorial D, a concrete
realization of the ideas of the Manifesto

III. Informal Discussions and Explanations: A cai·eful point-by-point examination and exposition of the Manifesto, with
copious examples in Tutorial D

IV Subtyping and Inheritance: A detailed and comprehensive proposal for a model of type inheritance, with (again)
numerous examples

thit·dl html[S/ 14/201411 :16:22 PM]

THE THIRD MANIFESTO :

Appendixes: Annotated references and bibliography; comparisons with SQL3 and ODMG; database design
considerations; and many other topics

The authors combine precision and thoroughness of exposition with the approachability that readers familiar with their
previous publications will recognize and welcome. The book is essential reading for the database student or
professional. Author information: Hugh Darwen (daiwen@vnet.ibm.com, +44 (0) 1926-464398 voice, +44 (0) 1926-
410764) is a database systems specialist at IBM United Kingdom Limited; C. J. Date (+ I 707/433-6523voice,+1
707 /433-7322 fax) is an independent author, lecturer, reseai·cher, and consultant, specializing in relational database
systems.

*** End *** End *** End ***

Copyright a 1998 Hugh Darwen and C. J. Date Page 14

Go ba c k t o t he t op Previ ous page Next p a ge

thit·dl html[S/ 14/201411 :16:22 PM]

